Properties

Label 3528.2
Level 3528
Weight 2
Dimension 143857
Nonzero newspaces 60
Sturm bound 1354752
Trace bound 25

Downloads

Learn more

Defining parameters

Level: N N = 3528=233272 3528 = 2^{3} \cdot 3^{2} \cdot 7^{2}
Weight: k k = 2 2
Nonzero newspaces: 60 60
Sturm bound: 13547521354752
Trace bound: 2525

Dimensions

The following table gives the dimensions of various subspaces of M2(Γ1(3528))M_{2}(\Gamma_1(3528)).

Total New Old
Modular forms 344448 145603 198845
Cusp forms 332929 143857 189072
Eisenstein series 11519 1746 9773

Trace form

143857q92q2123q392q4+4q5128q6108q7176q8249q9294q1095q11134q12+10q13108q14240q15100q16188q17+210q99+O(q100) 143857 q - 92 q^{2} - 123 q^{3} - 92 q^{4} + 4 q^{5} - 128 q^{6} - 108 q^{7} - 176 q^{8} - 249 q^{9} - 294 q^{10} - 95 q^{11} - 134 q^{12} + 10 q^{13} - 108 q^{14} - 240 q^{15} - 100 q^{16} - 188 q^{17}+ \cdots - 210 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(Γ1(3528))S_{2}^{\mathrm{new}}(\Gamma_1(3528))

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
3528.2.a χ3528(1,)\chi_{3528}(1, \cdot) 3528.2.a.a 1 1
3528.2.a.b 1
3528.2.a.c 1
3528.2.a.d 1
3528.2.a.e 1
3528.2.a.f 1
3528.2.a.g 1
3528.2.a.h 1
3528.2.a.i 1
3528.2.a.j 1
3528.2.a.k 1
3528.2.a.l 1
3528.2.a.m 1
3528.2.a.n 1
3528.2.a.o 1
3528.2.a.p 1
3528.2.a.q 1
3528.2.a.r 1
3528.2.a.s 1
3528.2.a.t 1
3528.2.a.u 1
3528.2.a.v 1
3528.2.a.w 1
3528.2.a.x 1
3528.2.a.y 1
3528.2.a.z 1
3528.2.a.ba 1
3528.2.a.bb 2
3528.2.a.bc 2
3528.2.a.bd 2
3528.2.a.be 2
3528.2.a.bf 2
3528.2.a.bg 2
3528.2.a.bh 2
3528.2.a.bi 2
3528.2.a.bj 2
3528.2.a.bk 2
3528.2.a.bl 2
3528.2.a.bm 2
3528.2.b χ3528(1567,)\chi_{3528}(1567, \cdot) None 0 1
3528.2.c χ3528(1765,)\chi_{3528}(1765, \cdot) n/a 200 1
3528.2.h χ3528(1079,)\chi_{3528}(1079, \cdot) None 0 1
3528.2.i χ3528(2645,)\chi_{3528}(2645, \cdot) n/a 160 1
3528.2.j χ3528(2843,)\chi_{3528}(2843, \cdot) n/a 164 1
3528.2.k χ3528(881,)\chi_{3528}(881, \cdot) 3528.2.k.a 8 1
3528.2.k.b 16
3528.2.k.c 16
3528.2.p χ3528(3331,)\chi_{3528}(3331, \cdot) n/a 196 1
3528.2.q χ3528(1537,)\chi_{3528}(1537, \cdot) n/a 240 2
3528.2.r χ3528(1177,)\chi_{3528}(1177, \cdot) n/a 246 2
3528.2.s χ3528(361,)\chi_{3528}(361, \cdot) 3528.2.s.a 2 2
3528.2.s.b 2
3528.2.s.c 2
3528.2.s.d 2
3528.2.s.e 2
3528.2.s.f 2
3528.2.s.g 2
3528.2.s.h 2
3528.2.s.i 2
3528.2.s.j 2
3528.2.s.k 2
3528.2.s.l 2
3528.2.s.m 2
3528.2.s.n 2
3528.2.s.o 2
3528.2.s.p 2
3528.2.s.q 2
3528.2.s.r 2
3528.2.s.s 2
3528.2.s.t 2
3528.2.s.u 2
3528.2.s.v 2
3528.2.s.w 2
3528.2.s.x 2
3528.2.s.y 2
3528.2.s.z 2
3528.2.s.ba 2
3528.2.s.bb 2
3528.2.s.bc 4
3528.2.s.bd 4
3528.2.s.be 4
3528.2.s.bf 4
3528.2.s.bg 4
3528.2.s.bh 4
3528.2.s.bi 4
3528.2.s.bj 4
3528.2.s.bk 4
3528.2.s.bl 4
3528.2.s.bm 4
3528.2.t χ3528(961,)\chi_{3528}(961, \cdot) n/a 240 2
3528.2.w χ3528(949,)\chi_{3528}(949, \cdot) n/a 944 2
3528.2.x χ3528(31,)\chi_{3528}(31, \cdot) None 0 2
3528.2.y χ3528(1685,)\chi_{3528}(1685, \cdot) n/a 944 2
3528.2.z χ3528(2615,)\chi_{3528}(2615, \cdot) None 0 2
3528.2.be χ3528(979,)\chi_{3528}(979, \cdot) n/a 944 2
3528.2.bf χ3528(619,)\chi_{3528}(619, \cdot) n/a 944 2
3528.2.bk χ3528(19,)\chi_{3528}(19, \cdot) n/a 392 2
3528.2.bl χ3528(521,)\chi_{3528}(521, \cdot) 3528.2.bl.a 16 2
3528.2.bl.b 16
3528.2.bl.c 16
3528.2.bl.d 32
3528.2.bm χ3528(2627,)\chi_{3528}(2627, \cdot) n/a 320 2
3528.2.br χ3528(491,)\chi_{3528}(491, \cdot) n/a 964 2
3528.2.bs χ3528(2273,)\chi_{3528}(2273, \cdot) n/a 240 2
3528.2.bt χ3528(275,)\chi_{3528}(275, \cdot) n/a 944 2
3528.2.bu χ3528(2057,)\chi_{3528}(2057, \cdot) n/a 240 2
3528.2.bz χ3528(2255,)\chi_{3528}(2255, \cdot) None 0 2
3528.2.ca χ3528(509,)\chi_{3528}(509, \cdot) n/a 944 2
3528.2.cb χ3528(263,)\chi_{3528}(263, \cdot) None 0 2
3528.2.cc χ3528(293,)\chi_{3528}(293, \cdot) n/a 944 2
3528.2.ch χ3528(2285,)\chi_{3528}(2285, \cdot) n/a 320 2
3528.2.ci χ3528(863,)\chi_{3528}(863, \cdot) None 0 2
3528.2.cj χ3528(1549,)\chi_{3528}(1549, \cdot) n/a 392 2
3528.2.ck χ3528(1207,)\chi_{3528}(1207, \cdot) None 0 2
3528.2.cp χ3528(391,)\chi_{3528}(391, \cdot) None 0 2
3528.2.cq χ3528(373,)\chi_{3528}(373, \cdot) n/a 944 2
3528.2.cr χ3528(607,)\chi_{3528}(607, \cdot) None 0 2
3528.2.cs χ3528(589,)\chi_{3528}(589, \cdot) n/a 964 2
3528.2.cx χ3528(1697,)\chi_{3528}(1697, \cdot) n/a 240 2
3528.2.cy χ3528(851,)\chi_{3528}(851, \cdot) n/a 944 2
3528.2.cz χ3528(1195,)\chi_{3528}(1195, \cdot) n/a 944 2
3528.2.dc χ3528(505,)\chi_{3528}(505, \cdot) n/a 420 6
3528.2.dd χ3528(307,)\chi_{3528}(307, \cdot) n/a 1668 6
3528.2.di χ3528(377,)\chi_{3528}(377, \cdot) n/a 336 6
3528.2.dj χ3528(323,)\chi_{3528}(323, \cdot) n/a 1344 6
3528.2.dk χ3528(125,)\chi_{3528}(125, \cdot) n/a 1344 6
3528.2.dl χ3528(71,)\chi_{3528}(71, \cdot) None 0 6
3528.2.dq χ3528(253,)\chi_{3528}(253, \cdot) n/a 1668 6
3528.2.dr χ3528(55,)\chi_{3528}(55, \cdot) None 0 6
3528.2.ds χ3528(193,)\chi_{3528}(193, \cdot) n/a 2016 12
3528.2.dt χ3528(289,)\chi_{3528}(289, \cdot) n/a 840 12
3528.2.du χ3528(169,)\chi_{3528}(169, \cdot) n/a 2016 12
3528.2.dv χ3528(25,)\chi_{3528}(25, \cdot) n/a 2016 12
3528.2.dy χ3528(187,)\chi_{3528}(187, \cdot) n/a 8016 12
3528.2.dz χ3528(347,)\chi_{3528}(347, \cdot) n/a 8016 12
3528.2.ea χ3528(185,)\chi_{3528}(185, \cdot) n/a 2016 12
3528.2.ef χ3528(85,)\chi_{3528}(85, \cdot) n/a 8016 12
3528.2.eg χ3528(103,)\chi_{3528}(103, \cdot) None 0 12
3528.2.eh χ3528(277,)\chi_{3528}(277, \cdot) n/a 8016 12
3528.2.ei χ3528(223,)\chi_{3528}(223, \cdot) None 0 12
3528.2.en χ3528(199,)\chi_{3528}(199, \cdot) None 0 12
3528.2.eo χ3528(37,)\chi_{3528}(37, \cdot) n/a 3336 12
3528.2.ep χ3528(359,)\chi_{3528}(359, \cdot) None 0 12
3528.2.eq χ3528(269,)\chi_{3528}(269, \cdot) n/a 2688 12
3528.2.ev χ3528(461,)\chi_{3528}(461, \cdot) n/a 8016 12
3528.2.ew χ3528(23,)\chi_{3528}(23, \cdot) None 0 12
3528.2.ex χ3528(5,)\chi_{3528}(5, \cdot) n/a 8016 12
3528.2.ey χ3528(239,)\chi_{3528}(239, \cdot) None 0 12
3528.2.fd χ3528(41,)\chi_{3528}(41, \cdot) n/a 2016 12
3528.2.fe χ3528(11,)\chi_{3528}(11, \cdot) n/a 8016 12
3528.2.ff χ3528(257,)\chi_{3528}(257, \cdot) n/a 2016 12
3528.2.fg χ3528(155,)\chi_{3528}(155, \cdot) n/a 8016 12
3528.2.fl χ3528(107,)\chi_{3528}(107, \cdot) n/a 2688 12
3528.2.fm χ3528(17,)\chi_{3528}(17, \cdot) n/a 672 12
3528.2.fn χ3528(451,)\chi_{3528}(451, \cdot) n/a 3336 12
3528.2.fs χ3528(115,)\chi_{3528}(115, \cdot) n/a 8016 12
3528.2.ft χ3528(139,)\chi_{3528}(139, \cdot) n/a 8016 12
3528.2.fy χ3528(95,)\chi_{3528}(95, \cdot) None 0 12
3528.2.fz χ3528(173,)\chi_{3528}(173, \cdot) n/a 8016 12
3528.2.ga χ3528(439,)\chi_{3528}(439, \cdot) None 0 12
3528.2.gb χ3528(205,)\chi_{3528}(205, \cdot) n/a 8016 12

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of S2old(Γ1(3528))S_{2}^{\mathrm{old}}(\Gamma_1(3528)) into lower level spaces

S2old(Γ1(3528)) S_{2}^{\mathrm{old}}(\Gamma_1(3528)) \cong S2new(Γ1(1))S_{2}^{\mathrm{new}}(\Gamma_1(1))36^{\oplus 36}\oplusS2new(Γ1(2))S_{2}^{\mathrm{new}}(\Gamma_1(2))27^{\oplus 27}\oplusS2new(Γ1(3))S_{2}^{\mathrm{new}}(\Gamma_1(3))24^{\oplus 24}\oplusS2new(Γ1(4))S_{2}^{\mathrm{new}}(\Gamma_1(4))18^{\oplus 18}\oplusS2new(Γ1(6))S_{2}^{\mathrm{new}}(\Gamma_1(6))18^{\oplus 18}\oplusS2new(Γ1(7))S_{2}^{\mathrm{new}}(\Gamma_1(7))24^{\oplus 24}\oplusS2new(Γ1(8))S_{2}^{\mathrm{new}}(\Gamma_1(8))9^{\oplus 9}\oplusS2new(Γ1(9))S_{2}^{\mathrm{new}}(\Gamma_1(9))12^{\oplus 12}\oplusS2new(Γ1(12))S_{2}^{\mathrm{new}}(\Gamma_1(12))12^{\oplus 12}\oplusS2new(Γ1(14))S_{2}^{\mathrm{new}}(\Gamma_1(14))18^{\oplus 18}\oplusS2new(Γ1(18))S_{2}^{\mathrm{new}}(\Gamma_1(18))9^{\oplus 9}\oplusS2new(Γ1(21))S_{2}^{\mathrm{new}}(\Gamma_1(21))16^{\oplus 16}\oplusS2new(Γ1(24))S_{2}^{\mathrm{new}}(\Gamma_1(24))6^{\oplus 6}\oplusS2new(Γ1(28))S_{2}^{\mathrm{new}}(\Gamma_1(28))12^{\oplus 12}\oplusS2new(Γ1(36))S_{2}^{\mathrm{new}}(\Gamma_1(36))6^{\oplus 6}\oplusS2new(Γ1(42))S_{2}^{\mathrm{new}}(\Gamma_1(42))12^{\oplus 12}\oplusS2new(Γ1(49))S_{2}^{\mathrm{new}}(\Gamma_1(49))12^{\oplus 12}\oplusS2new(Γ1(56))S_{2}^{\mathrm{new}}(\Gamma_1(56))6^{\oplus 6}\oplusS2new(Γ1(63))S_{2}^{\mathrm{new}}(\Gamma_1(63))8^{\oplus 8}\oplusS2new(Γ1(72))S_{2}^{\mathrm{new}}(\Gamma_1(72))3^{\oplus 3}\oplusS2new(Γ1(84))S_{2}^{\mathrm{new}}(\Gamma_1(84))8^{\oplus 8}\oplusS2new(Γ1(98))S_{2}^{\mathrm{new}}(\Gamma_1(98))9^{\oplus 9}\oplusS2new(Γ1(126))S_{2}^{\mathrm{new}}(\Gamma_1(126))6^{\oplus 6}\oplusS2new(Γ1(147))S_{2}^{\mathrm{new}}(\Gamma_1(147))8^{\oplus 8}\oplusS2new(Γ1(168))S_{2}^{\mathrm{new}}(\Gamma_1(168))4^{\oplus 4}\oplusS2new(Γ1(196))S_{2}^{\mathrm{new}}(\Gamma_1(196))6^{\oplus 6}\oplusS2new(Γ1(252))S_{2}^{\mathrm{new}}(\Gamma_1(252))4^{\oplus 4}\oplusS2new(Γ1(294))S_{2}^{\mathrm{new}}(\Gamma_1(294))6^{\oplus 6}\oplusS2new(Γ1(392))S_{2}^{\mathrm{new}}(\Gamma_1(392))3^{\oplus 3}\oplusS2new(Γ1(441))S_{2}^{\mathrm{new}}(\Gamma_1(441))4^{\oplus 4}\oplusS2new(Γ1(504))S_{2}^{\mathrm{new}}(\Gamma_1(504))2^{\oplus 2}\oplusS2new(Γ1(588))S_{2}^{\mathrm{new}}(\Gamma_1(588))4^{\oplus 4}\oplusS2new(Γ1(882))S_{2}^{\mathrm{new}}(\Gamma_1(882))3^{\oplus 3}\oplusS2new(Γ1(1176))S_{2}^{\mathrm{new}}(\Gamma_1(1176))2^{\oplus 2}\oplusS2new(Γ1(1764))S_{2}^{\mathrm{new}}(\Gamma_1(1764))2^{\oplus 2}