Properties

Label 35280.2.a.bj
Level 3528035280
Weight 22
Character orbit 35280.a
Self dual yes
Analytic conductor 281.712281.712
Dimension 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [35280,2,Mod(1,35280)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(35280, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("35280.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 35280=2432572 35280 = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 35280.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 281.712218331281.712218331
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: not computed
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == qq52q136q174q19+q25+6q294q31+2q37+6q418q43+12q476q53+12q592q61+2q658q6714q73+16q79+14q97+O(q100) q - q^{5} - 2 q^{13} - 6 q^{17} - 4 q^{19} + q^{25} + 6 q^{29} - 4 q^{31} + 2 q^{37} + 6 q^{41} - 8 q^{43} + 12 q^{47} - 6 q^{53} + 12 q^{59} - 2 q^{61} + 2 q^{65} - 8 q^{67} - 14 q^{73} + 16 q^{79}+ \cdots - 14 q^{97}+O(q^{100}) Copy content Toggle raw display

Atkin-Lehner signs

p p Sign
22 1 -1
33 1 -1
55 +1 +1
77 1 -1

Inner twists

Inner twists of this newform have not been computed.

Twists

Twists of this newform have not been computed.