Defining parameters
Level: | \( N \) | \(=\) | \( 3549 = 3 \cdot 7 \cdot 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 3549.bs (of order \(12\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 273 \) |
Character field: | \(\Q(\zeta_{12})\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(485\) | ||
Trace bound: | \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(3549, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 132 | 92 | 40 |
Cusp forms | 20 | 12 | 8 |
Eisenstein series | 112 | 80 | 32 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 12 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(3549, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
3549.1.bs.a | $4$ | $1.771$ | \(\Q(\zeta_{12})\) | $D_{12}$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(0\) | \(0\) | \(-2\) | \(q-\zeta_{12}q^{3}-\zeta_{12}^{3}q^{4}+\zeta_{12}^{4}q^{7}+\zeta_{12}^{2}q^{9}+\cdots\) |
3549.1.bs.b | $4$ | $1.771$ | \(\Q(\zeta_{12})\) | $D_{12}$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\zeta_{12}q^{3}-\zeta_{12}^{3}q^{4}+\zeta_{12}q^{7}+\zeta_{12}^{2}q^{9}+\cdots\) |
3549.1.bs.c | $4$ | $1.771$ | \(\Q(\zeta_{12})\) | $D_{12}$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(0\) | \(0\) | \(2\) | \(q-\zeta_{12}q^{3}-\zeta_{12}^{3}q^{4}-\zeta_{12}^{4}q^{7}+\zeta_{12}^{2}q^{9}+\cdots\) |
Decomposition of \(S_{1}^{\mathrm{old}}(3549, [\chi])\) into lower level spaces
\( S_{1}^{\mathrm{old}}(3549, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(273, [\chi])\)\(^{\oplus 2}\)