Properties

Label 3549.1.bs
Level $3549$
Weight $1$
Character orbit 3549.bs
Rep. character $\chi_{3549}(89,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $12$
Newform subspaces $3$
Sturm bound $485$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3549 = 3 \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3549.bs (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 273 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 3 \)
Sturm bound: \(485\)
Trace bound: \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(3549, [\chi])\).

Total New Old
Modular forms 132 92 40
Cusp forms 20 12 8
Eisenstein series 112 80 32

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 12 0 0 0

Trace form

\( 12 q + 6 q^{9} - 2 q^{12} - 12 q^{16} + 2 q^{19} + 2 q^{21} + 2 q^{28} + 2 q^{31} - 2 q^{37} + 6 q^{43} - 2 q^{49} + 2 q^{57} - 2 q^{67} - 2 q^{73} - 4 q^{75} - 4 q^{76} - 6 q^{81} - 4 q^{93} - 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(3549, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
3549.1.bs.a 3549.bs 273.as $4$ $1.771$ \(\Q(\zeta_{12})\) $D_{12}$ \(\Q(\sqrt{-3}) \) None 273.1.bs.a \(0\) \(0\) \(0\) \(-2\) \(q-\zeta_{12}q^{3}-\zeta_{12}^{3}q^{4}+\zeta_{12}^{4}q^{7}+\zeta_{12}^{2}q^{9}+\cdots\)
3549.1.bs.b 3549.bs 273.as $4$ $1.771$ \(\Q(\zeta_{12})\) $D_{12}$ \(\Q(\sqrt{-3}) \) None 273.1.bs.a \(0\) \(0\) \(0\) \(0\) \(q+\zeta_{12}q^{3}-\zeta_{12}^{3}q^{4}+\zeta_{12}q^{7}+\zeta_{12}^{2}q^{9}+\cdots\)
3549.1.bs.c 3549.bs 273.as $4$ $1.771$ \(\Q(\zeta_{12})\) $D_{12}$ \(\Q(\sqrt{-3}) \) None 273.1.bs.a \(0\) \(0\) \(0\) \(2\) \(q-\zeta_{12}q^{3}-\zeta_{12}^{3}q^{4}-\zeta_{12}^{4}q^{7}+\zeta_{12}^{2}q^{9}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(3549, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(3549, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(273, [\chi])\)\(^{\oplus 2}\)