Defining parameters
Level: | \( N \) | \(=\) | \( 3549 = 3 \cdot 7 \cdot 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 3549.bx (of order \(12\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 91 \) |
Character field: | \(\Q(\zeta_{12})\) | ||
Newform subspaces: | \( 0 \) | ||
Sturm bound: | \(485\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(3549, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 128 | 0 | 128 |
Cusp forms | 16 | 0 | 16 |
Eisenstein series | 112 | 0 | 112 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 0 | 0 | 0 | 0 |
Decomposition of \(S_{1}^{\mathrm{old}}(3549, [\chi])\) into lower level spaces
\( S_{1}^{\mathrm{old}}(3549, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(1183, [\chi])\)\(^{\oplus 2}\)