Properties

Label 36.2.a
Level $36$
Weight $2$
Character orbit 36.a
Rep. character $\chi_{36}(1,\cdot)$
Character field $\Q$
Dimension $1$
Newform subspaces $1$
Sturm bound $12$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 36 = 2^{2} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 36.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(12\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(36))\).

Total New Old
Modular forms 12 1 11
Cusp forms 1 1 0
Eisenstein series 11 0 11

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)FrickeDim
\(-\)\(+\)\(-\)\(1\)
Plus space\(+\)\(0\)
Minus space\(-\)\(1\)

Trace form

\( q - 4 q^{7} + 2 q^{13} + 8 q^{19} - 5 q^{25} - 4 q^{31} - 10 q^{37} + 8 q^{43} + 9 q^{49} + 14 q^{61} - 16 q^{67} - 10 q^{73} - 4 q^{79} - 8 q^{91} + 14 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(36))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3
36.2.a.a 36.a 1.a $1$ $0.287$ \(\Q\) \(\Q(\sqrt{-3}) \) 36.2.a.a \(0\) \(0\) \(0\) \(-4\) $-$ $+$ $N(\mathrm{U}(1))$ \(q-4q^{7}+2q^{13}+8q^{19}-5q^{25}-4q^{31}+\cdots\)