Defining parameters
Level: | \( N \) | \(=\) | \( 36 = 2^{2} \cdot 3^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 36.h (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 36 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(12\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(36, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 16 | 16 | 0 |
Cusp forms | 8 | 8 | 0 |
Eisenstein series | 8 | 8 | 0 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(36, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
36.2.h.a | $8$ | $0.287$ | 8.0.170772624.1 | None | \(-3\) | \(0\) | \(-6\) | \(0\) | \(q+(1-\beta _{1}+\beta _{4}+\beta _{7})q^{2}+(-\beta _{2}-\beta _{3}+\cdots)q^{3}+\cdots\) |