Defining parameters
Level: | \( N \) | \(=\) | \( 36 = 2^{2} \cdot 3^{2} \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 36.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 12 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(36\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(36, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 34 | 10 | 24 |
Cusp forms | 26 | 10 | 16 |
Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(36, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
36.6.b.a | $2$ | $5.774$ | \(\Q(\sqrt{-2}) \) | \(\Q(\sqrt{-1}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q+4\beta q^{2}-2^{5}q^{4}-79\beta q^{5}-2^{7}\beta q^{8}+\cdots\) |
36.6.b.b | $8$ | $5.774$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{2}q^{2}+(6+\beta _{7})q^{4}+(6\beta _{1}+3\beta _{2}+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{6}^{\mathrm{old}}(36, [\chi])\) into lower level spaces
\( S_{6}^{\mathrm{old}}(36, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(12, [\chi])\)\(^{\oplus 2}\)