Properties

Label 360.1.p
Level $360$
Weight $1$
Character orbit 360.p
Rep. character $\chi_{360}(19,\cdot)$
Character field $\Q$
Dimension $2$
Newform subspaces $2$
Sturm bound $72$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 360 = 2^{3} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 360.p (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 40 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(72\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(360, [\chi])\).

Total New Old
Modular forms 10 4 6
Cusp forms 2 2 0
Eisenstein series 8 2 6

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 2 0 0 0

Trace form

\( 2 q + 2 q^{4} - 2 q^{10} + 2 q^{16} - 4 q^{19} + 2 q^{25} - 2 q^{40} - 4 q^{46} - 2 q^{49} + 2 q^{64} - 4 q^{76} + 4 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(360, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
360.1.p.a 360.p 40.e $1$ $0.180$ \(\Q\) $D_{2}$ \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{-10}) \) \(\Q(\sqrt{6}) \) 360.1.p.a \(-1\) \(0\) \(1\) \(0\) \(q-q^{2}+q^{4}+q^{5}-q^{8}-q^{10}+q^{16}+\cdots\)
360.1.p.b 360.p 40.e $1$ $0.180$ \(\Q\) $D_{2}$ \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{-10}) \) \(\Q(\sqrt{6}) \) 360.1.p.a \(1\) \(0\) \(-1\) \(0\) \(q+q^{2}+q^{4}-q^{5}+q^{8}-q^{10}+q^{16}+\cdots\)