Defining parameters
Level: | \( N \) | \(=\) | \( 360 = 2^{3} \cdot 3^{2} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 360.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 24 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(144\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(7\), \(23\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(360, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 80 | 16 | 64 |
Cusp forms | 64 | 16 | 48 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(360, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
360.2.b.a | $2$ | $2.875$ | \(\Q(\sqrt{-2}) \) | None | \(0\) | \(0\) | \(-2\) | \(0\) | \(q+\beta q^{2}-2q^{4}-q^{5}-3\beta q^{7}-2\beta q^{8}+\cdots\) |
360.2.b.b | $2$ | $2.875$ | \(\Q(\sqrt{-2}) \) | None | \(0\) | \(0\) | \(2\) | \(0\) | \(q+\beta q^{2}-2q^{4}+q^{5}+3\beta q^{7}-2\beta q^{8}+\cdots\) |
360.2.b.c | $6$ | $2.875$ | 6.0.2580992.1 | None | \(-2\) | \(0\) | \(-6\) | \(0\) | \(q+\beta _{4}q^{2}+(\beta _{2}+\beta _{5})q^{4}-q^{5}+\beta _{2}q^{7}+\cdots\) |
360.2.b.d | $6$ | $2.875$ | 6.0.2580992.1 | None | \(2\) | \(0\) | \(6\) | \(0\) | \(q-\beta _{4}q^{2}+(\beta _{2}+\beta _{5})q^{4}+q^{5}+\beta _{2}q^{7}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(360, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(360, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(120, [\chi])\)\(^{\oplus 2}\)