Properties

Label 360.2.m
Level 360360
Weight 22
Character orbit 360.m
Rep. character χ360(179,)\chi_{360}(179,\cdot)
Character field Q\Q
Dimension 2424
Newform subspaces 33
Sturm bound 144144
Trace bound 77

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 360=23325 360 = 2^{3} \cdot 3^{2} \cdot 5
Weight: k k == 2 2
Character orbit: [χ][\chi] == 360.m (of order 22 and degree 11)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 120 120
Character field: Q\Q
Newform subspaces: 3 3
Sturm bound: 144144
Trace bound: 77
Distinguishing TpT_p: 77

Dimensions

The following table gives the dimensions of various subspaces of M2(360,[χ])M_{2}(360, [\chi]).

Total New Old
Modular forms 80 24 56
Cusp forms 64 24 40
Eisenstein series 16 0 16

Trace form

24q4q48q10+20q16+16q1932q3428q4048q46+24q4928q64+32q7056q768q94+O(q100) 24 q - 4 q^{4} - 8 q^{10} + 20 q^{16} + 16 q^{19} - 32 q^{34} - 28 q^{40} - 48 q^{46} + 24 q^{49} - 28 q^{64} + 32 q^{70} - 56 q^{76} - 8 q^{94}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(360,[χ])S_{2}^{\mathrm{new}}(360, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
360.2.m.a 360.m 120.m 44 2.8752.875 Q(2,5)\Q(\sqrt{-2}, \sqrt{-5}) Q(10)\Q(\sqrt{-10}) 360.2.m.a 00 00 00 8-8 U(1)[D2]\mathrm{U}(1)[D_{2}] qβ1q22q4+β2q5+(2+β3)q7+q-\beta _{1}q^{2}-2q^{4}+\beta _{2}q^{5}+(-2+\beta _{3})q^{7}+\cdots
360.2.m.b 360.m 120.m 44 2.8752.875 Q(2,5)\Q(\sqrt{-2}, \sqrt{-5}) Q(10)\Q(\sqrt{-10}) 360.2.m.a 00 00 00 88 U(1)[D2]\mathrm{U}(1)[D_{2}] qβ1q22q4+β2q5+(2β3)q7+q-\beta _{1}q^{2}-2q^{4}+\beta _{2}q^{5}+(2-\beta _{3})q^{7}+\cdots
360.2.m.c 360.m 120.m 1616 2.8752.875 Q[x]/(x16)\mathbb{Q}[x]/(x^{16} - \cdots) None 360.2.m.c 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] qβ1q2+(1β2)q4β12q5+(β6+)q7+q-\beta _{1}q^{2}+(1-\beta _{2})q^{4}-\beta _{12}q^{5}+(-\beta _{6}+\cdots)q^{7}+\cdots

Decomposition of S2old(360,[χ])S_{2}^{\mathrm{old}}(360, [\chi]) into lower level spaces

S2old(360,[χ]) S_{2}^{\mathrm{old}}(360, [\chi]) \simeq S2new(120,[χ])S_{2}^{\mathrm{new}}(120, [\chi])2^{\oplus 2}