Properties

Label 360.2.m
Level $360$
Weight $2$
Character orbit 360.m
Rep. character $\chi_{360}(179,\cdot)$
Character field $\Q$
Dimension $24$
Newform subspaces $3$
Sturm bound $144$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 360 = 2^{3} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 360.m (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 120 \)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(144\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(360, [\chi])\).

Total New Old
Modular forms 80 24 56
Cusp forms 64 24 40
Eisenstein series 16 0 16

Trace form

\( 24 q - 4 q^{4} - 8 q^{10} + 20 q^{16} + 16 q^{19} - 32 q^{34} - 28 q^{40} - 48 q^{46} + 24 q^{49} - 28 q^{64} + 32 q^{70} - 56 q^{76} - 8 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(360, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
360.2.m.a 360.m 120.m $4$ $2.875$ \(\Q(\sqrt{-2}, \sqrt{-5})\) \(\Q(\sqrt{-10}) \) 360.2.m.a \(0\) \(0\) \(0\) \(-8\) $\mathrm{U}(1)[D_{2}]$ \(q-\beta _{1}q^{2}-2q^{4}+\beta _{2}q^{5}+(-2+\beta _{3})q^{7}+\cdots\)
360.2.m.b 360.m 120.m $4$ $2.875$ \(\Q(\sqrt{-2}, \sqrt{-5})\) \(\Q(\sqrt{-10}) \) 360.2.m.a \(0\) \(0\) \(0\) \(8\) $\mathrm{U}(1)[D_{2}]$ \(q-\beta _{1}q^{2}-2q^{4}+\beta _{2}q^{5}+(2-\beta _{3})q^{7}+\cdots\)
360.2.m.c 360.m 120.m $16$ $2.875$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 360.2.m.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{1}q^{2}+(1-\beta _{2})q^{4}-\beta _{12}q^{5}+(-\beta _{6}+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(360, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(360, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(120, [\chi])\)\(^{\oplus 2}\)