Properties

Label 360.4
Level 360
Weight 4
Dimension 4177
Nonzero newspaces 18
Sturm bound 27648
Trace bound 10

Downloads

Learn more

Defining parameters

Level: N N = 360=23325 360 = 2^{3} \cdot 3^{2} \cdot 5
Weight: k k = 4 4
Nonzero newspaces: 18 18
Sturm bound: 2764827648
Trace bound: 1010

Dimensions

The following table gives the dimensions of various subspaces of M4(Γ1(360))M_{4}(\Gamma_1(360)).

Total New Old
Modular forms 10752 4285 6467
Cusp forms 9984 4177 5807
Eisenstein series 768 108 660

Trace form

4177q4q210q3+16q4+11q5+8q6+84q764q874q9116q10210q11228q1274q13172q1440q15404q16+174q17+224q18++8988q99+O(q100) 4177 q - 4 q^{2} - 10 q^{3} + 16 q^{4} + 11 q^{5} + 8 q^{6} + 84 q^{7} - 64 q^{8} - 74 q^{9} - 116 q^{10} - 210 q^{11} - 228 q^{12} - 74 q^{13} - 172 q^{14} - 40 q^{15} - 404 q^{16} + 174 q^{17} + 224 q^{18}+ \cdots + 8988 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(Γ1(360))S_{4}^{\mathrm{new}}(\Gamma_1(360))

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
360.4.a χ360(1,)\chi_{360}(1, \cdot) 360.4.a.a 1 1
360.4.a.b 1
360.4.a.c 1
360.4.a.d 1
360.4.a.e 1
360.4.a.f 1
360.4.a.g 1
360.4.a.h 1
360.4.a.i 1
360.4.a.j 1
360.4.a.k 1
360.4.a.l 1
360.4.a.m 1
360.4.a.n 1
360.4.a.o 1
360.4.b χ360(251,)\chi_{360}(251, \cdot) 360.4.b.a 24 1
360.4.b.b 24
360.4.d χ360(109,)\chi_{360}(109, \cdot) 360.4.d.a 4 1
360.4.d.b 4
360.4.d.c 4
360.4.d.d 16
360.4.d.e 18
360.4.d.f 18
360.4.d.g 24
360.4.f χ360(289,)\chi_{360}(289, \cdot) 360.4.f.a 2 1
360.4.f.b 2
360.4.f.c 2
360.4.f.d 4
360.4.f.e 4
360.4.f.f 8
360.4.h χ360(71,)\chi_{360}(71, \cdot) None 0 1
360.4.k χ360(181,)\chi_{360}(181, \cdot) 360.4.k.a 2 1
360.4.k.b 8
360.4.k.c 12
360.4.k.d 14
360.4.k.e 24
360.4.m χ360(179,)\chi_{360}(179, \cdot) 360.4.m.a 4 1
360.4.m.b 4
360.4.m.c 64
360.4.o χ360(359,)\chi_{360}(359, \cdot) None 0 1
360.4.q χ360(121,)\chi_{360}(121, \cdot) 360.4.q.a 2 2
360.4.q.b 16
360.4.q.c 16
360.4.q.d 18
360.4.q.e 20
360.4.s χ360(17,)\chi_{360}(17, \cdot) 360.4.s.a 4 2
360.4.s.b 16
360.4.s.c 16
360.4.t χ360(127,)\chi_{360}(127, \cdot) None 0 2
360.4.w χ360(163,)\chi_{360}(163, \cdot) n/a 176 2
360.4.x χ360(53,)\chi_{360}(53, \cdot) n/a 144 2
360.4.bb χ360(119,)\chi_{360}(119, \cdot) None 0 2
360.4.bd χ360(59,)\chi_{360}(59, \cdot) n/a 424 2
360.4.bf χ360(61,)\chi_{360}(61, \cdot) n/a 288 2
360.4.bg χ360(191,)\chi_{360}(191, \cdot) None 0 2
360.4.bi χ360(49,)\chi_{360}(49, \cdot) n/a 108 2
360.4.bk χ360(229,)\chi_{360}(229, \cdot) n/a 424 2
360.4.bm χ360(11,)\chi_{360}(11, \cdot) n/a 288 2
360.4.bo χ360(43,)\chi_{360}(43, \cdot) n/a 848 4
360.4.br χ360(77,)\chi_{360}(77, \cdot) n/a 848 4
360.4.bs χ360(113,)\chi_{360}(113, \cdot) n/a 216 4
360.4.bv χ360(7,)\chi_{360}(7, \cdot) None 0 4

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of S4old(Γ1(360))S_{4}^{\mathrm{old}}(\Gamma_1(360)) into lower level spaces

S4old(Γ1(360)) S_{4}^{\mathrm{old}}(\Gamma_1(360)) \cong S4new(Γ1(1))S_{4}^{\mathrm{new}}(\Gamma_1(1))24^{\oplus 24}\oplusS4new(Γ1(2))S_{4}^{\mathrm{new}}(\Gamma_1(2))18^{\oplus 18}\oplusS4new(Γ1(3))S_{4}^{\mathrm{new}}(\Gamma_1(3))16^{\oplus 16}\oplusS4new(Γ1(4))S_{4}^{\mathrm{new}}(\Gamma_1(4))12^{\oplus 12}\oplusS4new(Γ1(5))S_{4}^{\mathrm{new}}(\Gamma_1(5))12^{\oplus 12}\oplusS4new(Γ1(6))S_{4}^{\mathrm{new}}(\Gamma_1(6))12^{\oplus 12}\oplusS4new(Γ1(8))S_{4}^{\mathrm{new}}(\Gamma_1(8))6^{\oplus 6}\oplusS4new(Γ1(9))S_{4}^{\mathrm{new}}(\Gamma_1(9))8^{\oplus 8}\oplusS4new(Γ1(10))S_{4}^{\mathrm{new}}(\Gamma_1(10))9^{\oplus 9}\oplusS4new(Γ1(12))S_{4}^{\mathrm{new}}(\Gamma_1(12))8^{\oplus 8}\oplusS4new(Γ1(15))S_{4}^{\mathrm{new}}(\Gamma_1(15))8^{\oplus 8}\oplusS4new(Γ1(18))S_{4}^{\mathrm{new}}(\Gamma_1(18))6^{\oplus 6}\oplusS4new(Γ1(20))S_{4}^{\mathrm{new}}(\Gamma_1(20))6^{\oplus 6}\oplusS4new(Γ1(24))S_{4}^{\mathrm{new}}(\Gamma_1(24))4^{\oplus 4}\oplusS4new(Γ1(30))S_{4}^{\mathrm{new}}(\Gamma_1(30))6^{\oplus 6}\oplusS4new(Γ1(36))S_{4}^{\mathrm{new}}(\Gamma_1(36))4^{\oplus 4}\oplusS4new(Γ1(40))S_{4}^{\mathrm{new}}(\Gamma_1(40))3^{\oplus 3}\oplusS4new(Γ1(45))S_{4}^{\mathrm{new}}(\Gamma_1(45))4^{\oplus 4}\oplusS4new(Γ1(60))S_{4}^{\mathrm{new}}(\Gamma_1(60))4^{\oplus 4}\oplusS4new(Γ1(72))S_{4}^{\mathrm{new}}(\Gamma_1(72))2^{\oplus 2}\oplusS4new(Γ1(90))S_{4}^{\mathrm{new}}(\Gamma_1(90))3^{\oplus 3}\oplusS4new(Γ1(120))S_{4}^{\mathrm{new}}(\Gamma_1(120))2^{\oplus 2}\oplusS4new(Γ1(180))S_{4}^{\mathrm{new}}(\Gamma_1(180))2^{\oplus 2}