Defining parameters
Level: | \( N \) | \(=\) | \( 364 = 2^{2} \cdot 7 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 364.bb (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 91 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(112\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(364, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 124 | 18 | 106 |
Cusp forms | 100 | 18 | 82 |
Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(364, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
364.2.bb.a | $18$ | $2.907$ | \(\mathbb{Q}[x]/(x^{18} - \cdots)\) | None | \(0\) | \(1\) | \(0\) | \(2\) | \(q+\beta _{1}q^{3}-\beta _{11}q^{5}+(-\beta _{7}-\beta _{13})q^{7}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(364, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(364, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(91, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(182, [\chi])\)\(^{\oplus 2}\)