Properties

Label 364.2.bb
Level $364$
Weight $2$
Character orbit 364.bb
Rep. character $\chi_{364}(205,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $18$
Newform subspaces $1$
Sturm bound $112$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 364 = 2^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 364.bb (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 91 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(112\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(364, [\chi])\).

Total New Old
Modular forms 124 18 106
Cusp forms 100 18 82
Eisenstein series 24 0 24

Trace form

\( 18 q + q^{3} + 2 q^{7} - 6 q^{9} - 6 q^{11} - 4 q^{13} + 6 q^{15} + 20 q^{17} + 21 q^{19} + 7 q^{21} + 12 q^{23} + 5 q^{25} - 20 q^{27} + 2 q^{29} - 9 q^{31} + 12 q^{33} - 6 q^{35} + 14 q^{39} - 9 q^{41}+ \cdots - 18 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(364, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
364.2.bb.a 364.bb 91.k $18$ $2.907$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None 364.2.bb.a \(0\) \(1\) \(0\) \(2\) $\mathrm{SU}(2)[C_{6}]$ \(q+\beta _{1}q^{3}-\beta _{11}q^{5}+(-\beta _{7}-\beta _{13})q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(364, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(364, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(91, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(182, [\chi])\)\(^{\oplus 2}\)