Defining parameters
Level: | \( N \) | \(=\) | \( 364 = 2^{2} \cdot 7 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 364.v (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 364 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(112\) | ||
Trace bound: | \(6\) | ||
Distinguishing \(T_p\): | \(3\), \(17\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(364, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 120 | 120 | 0 |
Cusp forms | 104 | 104 | 0 |
Eisenstein series | 16 | 16 | 0 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(364, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
364.2.v.a | $4$ | $2.907$ | \(\Q(\zeta_{12})\) | None | \(-2\) | \(0\) | \(0\) | \(0\) | \(q+(-\zeta_{12}-\zeta_{12}^{2}+\zeta_{12}^{3})q^{2}+(\zeta_{12}+\cdots)q^{3}+\cdots\) |
364.2.v.b | $4$ | $2.907$ | \(\Q(\zeta_{12})\) | None | \(-2\) | \(0\) | \(0\) | \(0\) | \(q+(-\zeta_{12}-\zeta_{12}^{2}+\zeta_{12}^{3})q^{2}+(-\zeta_{12}+\cdots)q^{3}+\cdots\) |
364.2.v.c | $8$ | $2.907$ | 8.0.592240896.1 | None | \(-4\) | \(-6\) | \(0\) | \(2\) | \(q+(-\beta _{2}-\beta _{3})q^{2}+(-\beta _{3}-\beta _{6})q^{3}+\cdots\) |
364.2.v.d | $8$ | $2.907$ | 8.0.592240896.1 | None | \(-4\) | \(6\) | \(0\) | \(-2\) | \(q+(-1-\beta _{2}+\beta _{3}+\beta _{7})q^{2}+(1-2\beta _{3}+\cdots)q^{3}+\cdots\) |
364.2.v.e | $8$ | $2.907$ | 8.0.49787136.1 | None | \(2\) | \(0\) | \(0\) | \(0\) | \(q+(1-\beta _{2}-\beta _{4}+\beta _{6})q^{2}+(\beta _{3}-2\beta _{7})q^{3}+\cdots\) |
364.2.v.f | $72$ | $2.907$ | None | \(8\) | \(0\) | \(0\) | \(0\) |