Defining parameters
Level: | \( N \) | \(=\) | \( 3648 = 2^{6} \cdot 3 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 3648.bf (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 456 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(640\) | ||
Trace bound: | \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(3648, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 64 | 16 | 48 |
Cusp forms | 16 | 16 | 0 |
Eisenstein series | 48 | 0 | 48 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 16 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(3648, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
3648.1.bf.a | $4$ | $1.821$ | \(\Q(\zeta_{12})\) | $D_{6}$ | \(\Q(\sqrt{-2}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\zeta_{12}^{3}q^{3}-q^{9}+(\zeta_{12}-\zeta_{12}^{5})q^{11}+\cdots\) |
3648.1.bf.b | $4$ | $1.821$ | \(\Q(\zeta_{12})\) | $D_{6}$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\zeta_{12}q^{3}+(-\zeta_{12}+\zeta_{12}^{5})q^{7}+\zeta_{12}^{2}q^{9}+\cdots\) |
3648.1.bf.c | $4$ | $1.821$ | \(\Q(\zeta_{12})\) | $D_{6}$ | \(\Q(\sqrt{-2}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\zeta_{12}^{5}q^{3}-\zeta_{12}^{4}q^{9}+(-\zeta_{12}+\zeta_{12}^{5}+\cdots)q^{11}+\cdots\) |
3648.1.bf.d | $4$ | $1.821$ | \(\Q(\zeta_{12})\) | $D_{6}$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\zeta_{12}q^{3}+(-\zeta_{12}+\zeta_{12}^{5})q^{7}+\zeta_{12}^{2}q^{9}+\cdots\) |