Properties

Label 3648.1.bf
Level $3648$
Weight $1$
Character orbit 3648.bf
Rep. character $\chi_{3648}(353,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $16$
Newform subspaces $4$
Sturm bound $640$
Trace bound $13$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3648 = 2^{6} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3648.bf (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 456 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 4 \)
Sturm bound: \(640\)
Trace bound: \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(3648, [\chi])\).

Total New Old
Modular forms 64 16 48
Cusp forms 16 16 0
Eisenstein series 48 0 48

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 16 0 0 0

Trace form

\( 16 q + 2 q^{9} + 8 q^{25} + 6 q^{33} + 8 q^{49} - 8 q^{57} + 8 q^{73} - 2 q^{81} + 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(3648, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
3648.1.bf.a 3648.bf 456.x $4$ $1.821$ \(\Q(\zeta_{12})\) $D_{6}$ \(\Q(\sqrt{-2}) \) None 3648.1.bf.a \(0\) \(0\) \(0\) \(0\) \(q-\zeta_{12}^{3}q^{3}-q^{9}+(\zeta_{12}-\zeta_{12}^{5})q^{11}+\cdots\)
3648.1.bf.b 3648.bf 456.x $4$ $1.821$ \(\Q(\zeta_{12})\) $D_{6}$ \(\Q(\sqrt{-3}) \) None 3648.1.bf.b \(0\) \(0\) \(0\) \(0\) \(q-\zeta_{12}q^{3}+(-\zeta_{12}+\zeta_{12}^{5})q^{7}+\zeta_{12}^{2}q^{9}+\cdots\)
3648.1.bf.c 3648.bf 456.x $4$ $1.821$ \(\Q(\zeta_{12})\) $D_{6}$ \(\Q(\sqrt{-2}) \) None 3648.1.bf.a \(0\) \(0\) \(0\) \(0\) \(q+\zeta_{12}^{5}q^{3}-\zeta_{12}^{4}q^{9}+(-\zeta_{12}+\zeta_{12}^{5}+\cdots)q^{11}+\cdots\)
3648.1.bf.d 3648.bf 456.x $4$ $1.821$ \(\Q(\zeta_{12})\) $D_{6}$ \(\Q(\sqrt{-3}) \) None 3648.1.bf.b \(0\) \(0\) \(0\) \(0\) \(q+\zeta_{12}q^{3}+(-\zeta_{12}+\zeta_{12}^{5})q^{7}+\zeta_{12}^{2}q^{9}+\cdots\)