Properties

Label 3648.1.bl
Level $3648$
Weight $1$
Character orbit 3648.bl
Rep. character $\chi_{3648}(1793,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $4$
Newform subspaces $2$
Sturm bound $640$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3648 = 2^{6} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3648.bl (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 57 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 2 \)
Sturm bound: \(640\)
Trace bound: \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(3648, [\chi])\).

Total New Old
Modular forms 72 12 60
Cusp forms 24 4 20
Eisenstein series 48 8 40

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 4 0 0 0

Trace form

\( 4 q - 2 q^{9} - 2 q^{13} - 2 q^{21} - 2 q^{25} + 4 q^{37} - 2 q^{57} - 2 q^{61} + 2 q^{73} - 2 q^{81} - 2 q^{93} - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(3648, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
3648.1.bl.a 3648.bl 57.h $2$ $1.821$ \(\Q(\sqrt{-3}) \) $D_{3}$ \(\Q(\sqrt{-3}) \) None 57.1.h.a \(0\) \(-1\) \(0\) \(2\) \(q+\zeta_{6}^{2}q^{3}+q^{7}-\zeta_{6}q^{9}-\zeta_{6}q^{13}+\cdots\)
3648.1.bl.b 3648.bl 57.h $2$ $1.821$ \(\Q(\sqrt{-3}) \) $D_{3}$ \(\Q(\sqrt{-3}) \) None 57.1.h.a \(0\) \(1\) \(0\) \(-2\) \(q-\zeta_{6}^{2}q^{3}-q^{7}-\zeta_{6}q^{9}-\zeta_{6}q^{13}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(3648, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(3648, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(57, [\chi])\)\(^{\oplus 7}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(912, [\chi])\)\(^{\oplus 3}\)