Properties

Label 368.2
Level 368
Weight 2
Dimension 2273
Nonzero newspaces 8
Newform subspaces 28
Sturm bound 16896
Trace bound 5

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 368 = 2^{4} \cdot 23 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 8 \)
Newform subspaces: \( 28 \)
Sturm bound: \(16896\)
Trace bound: \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(368))\).

Total New Old
Modular forms 4532 2461 2071
Cusp forms 3917 2273 1644
Eisenstein series 615 188 427

Trace form

\( 2273 q - 40 q^{2} - 29 q^{3} - 44 q^{4} - 51 q^{5} - 52 q^{6} - 33 q^{7} - 52 q^{8} - 11 q^{9} - 44 q^{10} - 37 q^{11} - 36 q^{12} - 51 q^{13} - 36 q^{14} - 41 q^{15} - 28 q^{16} - 91 q^{17} - 48 q^{18}+ \cdots - 227 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(368))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
368.2.a \(\chi_{368}(1, \cdot)\) 368.2.a.a 1 1
368.2.a.b 1
368.2.a.c 1
368.2.a.d 1
368.2.a.e 1
368.2.a.f 1
368.2.a.g 1
368.2.a.h 2
368.2.a.i 2
368.2.b \(\chi_{368}(185, \cdot)\) None 0 1
368.2.c \(\chi_{368}(367, \cdot)\) 368.2.c.a 4 1
368.2.c.b 8
368.2.h \(\chi_{368}(183, \cdot)\) None 0 1
368.2.i \(\chi_{368}(91, \cdot)\) 368.2.i.a 12 2
368.2.i.b 80
368.2.j \(\chi_{368}(93, \cdot)\) 368.2.j.a 2 2
368.2.j.b 4
368.2.j.c 12
368.2.j.d 24
368.2.j.e 46
368.2.m \(\chi_{368}(49, \cdot)\) 368.2.m.a 10 10
368.2.m.b 10
368.2.m.c 10
368.2.m.d 20
368.2.m.e 30
368.2.m.f 30
368.2.n \(\chi_{368}(7, \cdot)\) None 0 10
368.2.s \(\chi_{368}(15, \cdot)\) 368.2.s.a 40 10
368.2.s.b 80
368.2.t \(\chi_{368}(9, \cdot)\) None 0 10
368.2.w \(\chi_{368}(13, \cdot)\) 368.2.w.a 920 20
368.2.x \(\chi_{368}(11, \cdot)\) 368.2.x.a 920 20

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(368))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(368)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(23))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(46))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(92))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(184))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(368))\)\(^{\oplus 1}\)