Defining parameters
Level: | \( N \) | = | \( 368 = 2^{4} \cdot 23 \) |
Weight: | \( k \) | = | \( 2 \) |
Nonzero newspaces: | \( 8 \) | ||
Newform subspaces: | \( 28 \) | ||
Sturm bound: | \(16896\) | ||
Trace bound: | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(368))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 4532 | 2461 | 2071 |
Cusp forms | 3917 | 2273 | 1644 |
Eisenstein series | 615 | 188 | 427 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(368))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
368.2.a | \(\chi_{368}(1, \cdot)\) | 368.2.a.a | 1 | 1 |
368.2.a.b | 1 | |||
368.2.a.c | 1 | |||
368.2.a.d | 1 | |||
368.2.a.e | 1 | |||
368.2.a.f | 1 | |||
368.2.a.g | 1 | |||
368.2.a.h | 2 | |||
368.2.a.i | 2 | |||
368.2.b | \(\chi_{368}(185, \cdot)\) | None | 0 | 1 |
368.2.c | \(\chi_{368}(367, \cdot)\) | 368.2.c.a | 4 | 1 |
368.2.c.b | 8 | |||
368.2.h | \(\chi_{368}(183, \cdot)\) | None | 0 | 1 |
368.2.i | \(\chi_{368}(91, \cdot)\) | 368.2.i.a | 12 | 2 |
368.2.i.b | 80 | |||
368.2.j | \(\chi_{368}(93, \cdot)\) | 368.2.j.a | 2 | 2 |
368.2.j.b | 4 | |||
368.2.j.c | 12 | |||
368.2.j.d | 24 | |||
368.2.j.e | 46 | |||
368.2.m | \(\chi_{368}(49, \cdot)\) | 368.2.m.a | 10 | 10 |
368.2.m.b | 10 | |||
368.2.m.c | 10 | |||
368.2.m.d | 20 | |||
368.2.m.e | 30 | |||
368.2.m.f | 30 | |||
368.2.n | \(\chi_{368}(7, \cdot)\) | None | 0 | 10 |
368.2.s | \(\chi_{368}(15, \cdot)\) | 368.2.s.a | 40 | 10 |
368.2.s.b | 80 | |||
368.2.t | \(\chi_{368}(9, \cdot)\) | None | 0 | 10 |
368.2.w | \(\chi_{368}(13, \cdot)\) | 368.2.w.a | 920 | 20 |
368.2.x | \(\chi_{368}(11, \cdot)\) | 368.2.x.a | 920 | 20 |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(368))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_1(368)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(23))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(46))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(92))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(184))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(368))\)\(^{\oplus 1}\)