Defining parameters
Level: | \( N \) | \(=\) | \( 368 = 2^{4} \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 7 \) |
Character orbit: | \([\chi]\) | \(=\) | 368.g (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 8 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 0 \) | ||
Sturm bound: | \(336\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{7}(368, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 292 | 0 | 292 |
Cusp forms | 284 | 0 | 284 |
Eisenstein series | 8 | 0 | 8 |
Decomposition of \(S_{7}^{\mathrm{old}}(368, [\chi])\) into lower level spaces
\( S_{7}^{\mathrm{old}}(368, [\chi]) \simeq \) \(S_{7}^{\mathrm{new}}(8, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(184, [\chi])\)\(^{\oplus 2}\)