Properties

Label 368.7.r
Level $368$
Weight $7$
Character orbit 368.r
Rep. character $\chi_{368}(31,\cdot)$
Character field $\Q(\zeta_{22})$
Dimension $720$
Sturm bound $336$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 368 = 2^{4} \cdot 23 \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 368.r (of order \(22\) and degree \(10\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 92 \)
Character field: \(\Q(\zeta_{22})\)
Sturm bound: \(336\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{7}(368, [\chi])\).

Total New Old
Modular forms 2940 720 2220
Cusp forms 2820 720 2100
Eisenstein series 120 0 120

Trace form

\( 720 q + 17496 q^{9} + 48144 q^{21} - 225000 q^{25} + 51408 q^{29} - 211344 q^{41} - 204192 q^{45} + 1417896 q^{49} - 301104 q^{53} - 849696 q^{57} + 2125968 q^{65} + 470016 q^{69} - 1507152 q^{77} - 11003592 q^{81}+ \cdots - 10079640 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{7}^{\mathrm{new}}(368, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{7}^{\mathrm{old}}(368, [\chi])\) into lower level spaces

\( S_{7}^{\mathrm{old}}(368, [\chi]) \simeq \) \(S_{7}^{\mathrm{new}}(92, [\chi])\)\(^{\oplus 3}\)