Properties

Label 3680.2.ea
Level $3680$
Weight $2$
Character orbit 3680.ea
Rep. character $\chi_{3680}(101,\cdot)$
Character field $\Q(\zeta_{88})$
Dimension $15360$
Sturm bound $1152$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3680 = 2^{5} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3680.ea (of order \(88\) and degree \(40\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 736 \)
Character field: \(\Q(\zeta_{88})\)
Sturm bound: \(1152\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3680, [\chi])\).

Total New Old
Modular forms 23200 15360 7840
Cusp forms 22880 15360 7520
Eisenstein series 320 0 320

Trace form

\( 15360 q + 16 q^{10} + 80 q^{16} + 80 q^{18} - 16 q^{22} + 16 q^{23} + 16 q^{24} + 48 q^{27} - 80 q^{28} + 24 q^{36} + 360 q^{38} + 48 q^{39} + 160 q^{42} + 32 q^{43} - 16 q^{44} - 640 q^{46} - 32 q^{51}+ \cdots - 272 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3680, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3680, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3680, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(736, [\chi])\)\(^{\oplus 2}\)