Properties

Label 370.2.ba
Level $370$
Weight $2$
Character orbit 370.ba
Rep. character $\chi_{370}(17,\cdot)$
Character field $\Q(\zeta_{36})$
Dimension $228$
Newform subspaces $2$
Sturm bound $114$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 370 = 2 \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 370.ba (of order \(36\) and degree \(12\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 185 \)
Character field: \(\Q(\zeta_{36})\)
Newform subspaces: \( 2 \)
Sturm bound: \(114\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(370, [\chi])\).

Total New Old
Modular forms 732 228 504
Cusp forms 636 228 408
Eisenstein series 96 0 96

Trace form

\( 228 q - 12 q^{3} + 6 q^{8} - 12 q^{12} + 24 q^{14} + 6 q^{20} - 12 q^{25} + 12 q^{27} - 48 q^{30} - 12 q^{33} - 84 q^{35} + 24 q^{37} - 24 q^{40} + 18 q^{41} + 84 q^{42} + 12 q^{44} - 120 q^{45} - 72 q^{49}+ \cdots + 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(370, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
370.2.ba.a 370.ba 185.z $108$ $2.954$ None 370.2.ba.a \(0\) \(-6\) \(6\) \(0\) $\mathrm{SU}(2)[C_{36}]$
370.2.ba.b 370.ba 185.z $120$ $2.954$ None 370.2.ba.b \(0\) \(-6\) \(-6\) \(0\) $\mathrm{SU}(2)[C_{36}]$

Decomposition of \(S_{2}^{\mathrm{old}}(370, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(370, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(185, [\chi])\)\(^{\oplus 2}\)