Properties

Label 370.2.ba
Level 370370
Weight 22
Character orbit 370.ba
Rep. character χ370(17,)\chi_{370}(17,\cdot)
Character field Q(ζ36)\Q(\zeta_{36})
Dimension 228228
Newform subspaces 22
Sturm bound 114114
Trace bound 11

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 370=2537 370 = 2 \cdot 5 \cdot 37
Weight: k k == 2 2
Character orbit: [χ][\chi] == 370.ba (of order 3636 and degree 1212)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 185 185
Character field: Q(ζ36)\Q(\zeta_{36})
Newform subspaces: 2 2
Sturm bound: 114114
Trace bound: 11
Distinguishing TpT_p: 33

Dimensions

The following table gives the dimensions of various subspaces of M2(370,[χ])M_{2}(370, [\chi]).

Total New Old
Modular forms 732 228 504
Cusp forms 636 228 408
Eisenstein series 96 0 96

Trace form

228q12q3+6q812q12+24q14+6q2012q25+12q2748q3012q3384q35+24q3724q40+18q41+84q42+12q44120q4572q49++24q98+O(q100) 228 q - 12 q^{3} + 6 q^{8} - 12 q^{12} + 24 q^{14} + 6 q^{20} - 12 q^{25} + 12 q^{27} - 48 q^{30} - 12 q^{33} - 84 q^{35} + 24 q^{37} - 24 q^{40} + 18 q^{41} + 84 q^{42} + 12 q^{44} - 120 q^{45} - 72 q^{49}+ \cdots + 24 q^{98}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(370,[χ])S_{2}^{\mathrm{new}}(370, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
370.2.ba.a 370.ba 185.z 108108 2.9542.954 None 370.2.ba.a 00 6-6 66 00 SU(2)[C36]\mathrm{SU}(2)[C_{36}]
370.2.ba.b 370.ba 185.z 120120 2.9542.954 None 370.2.ba.b 00 6-6 6-6 00 SU(2)[C36]\mathrm{SU}(2)[C_{36}]

Decomposition of S2old(370,[χ])S_{2}^{\mathrm{old}}(370, [\chi]) into lower level spaces

S2old(370,[χ]) S_{2}^{\mathrm{old}}(370, [\chi]) \simeq S2new(185,[χ])S_{2}^{\mathrm{new}}(185, [\chi])2^{\oplus 2}