Defining parameters
Level: | \( N \) | \(=\) | \( 370 = 2 \cdot 5 \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 370.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 185 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(114\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(370, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 60 | 20 | 40 |
Cusp forms | 52 | 20 | 32 |
Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(370, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
370.2.c.a | $10$ | $2.954$ | \(\mathbb{Q}[x]/(x^{10} + \cdots)\) | None | \(-10\) | \(0\) | \(-3\) | \(0\) | \(q-q^{2}+\beta _{1}q^{3}+q^{4}-\beta _{3}q^{5}-\beta _{1}q^{6}+\cdots\) |
370.2.c.b | $10$ | $2.954$ | \(\mathbb{Q}[x]/(x^{10} + \cdots)\) | None | \(10\) | \(0\) | \(3\) | \(0\) | \(q+q^{2}+\beta _{1}q^{3}+q^{4}+\beta _{3}q^{5}+\beta _{1}q^{6}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(370, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(370, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(185, [\chi])\)\(^{\oplus 2}\)