Defining parameters
Level: | \( N \) | \(=\) | \( 3700 = 2^{2} \cdot 5^{2} \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 3700.j (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 37 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(570\) | ||
Trace bound: | \(17\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(3700, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 48 | 6 | 42 |
Cusp forms | 12 | 6 | 6 |
Eisenstein series | 36 | 0 | 36 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 0 | 0 | 6 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(3700, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
3700.1.j.a | $2$ | $1.847$ | \(\Q(\sqrt{-1}) \) | $S_{4}$ | None | None | \(0\) | \(0\) | \(0\) | \(-2\) | \(q-i q^{3}-q^{7}-i q^{11}+i q^{21}-i q^{27}+\cdots\) |
3700.1.j.b | $2$ | $1.847$ | \(\Q(\sqrt{-1}) \) | $S_{4}$ | None | None | \(0\) | \(0\) | \(0\) | \(2\) | \(q+i q^{3}+q^{7}-i q^{11}+i q^{21}+i q^{27}+\cdots\) |
3700.1.j.c | $2$ | $1.847$ | \(\Q(\sqrt{-1}) \) | $S_{4}$ | None | None | \(0\) | \(0\) | \(0\) | \(2\) | \(q-i q^{3}+q^{7}-i q^{11}+(i+1)q^{17}+\cdots\) |
Decomposition of \(S_{1}^{\mathrm{old}}(3700, [\chi])\) into lower level spaces
\( S_{1}^{\mathrm{old}}(3700, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(148, [\chi])\)\(^{\oplus 3}\)