Properties

Label 3700.1.j
Level $3700$
Weight $1$
Character orbit 3700.j
Rep. character $\chi_{3700}(401,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $6$
Newform subspaces $3$
Sturm bound $570$
Trace bound $17$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3700 = 2^{2} \cdot 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3700.j (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 37 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 3 \)
Sturm bound: \(570\)
Trace bound: \(17\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(3700, [\chi])\).

Total New Old
Modular forms 48 6 42
Cusp forms 12 6 6
Eisenstein series 36 0 36

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 0 0 6 0

Trace form

\( 6 q + 2 q^{7} + 2 q^{17} + 2 q^{19} + 2 q^{23} - 2 q^{29} + 4 q^{31} - 2 q^{33} - 2 q^{47} + 2 q^{51} - 2 q^{53} + 2 q^{57} - 4 q^{61} + 2 q^{69} - 2 q^{71} - 6 q^{79} - 6 q^{81} + 2 q^{83} + 2 q^{87} + 2 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(3700, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
3700.1.j.a 3700.j 37.d $2$ $1.847$ \(\Q(\sqrt{-1}) \) $S_{4}$ None None 740.1.t.a \(0\) \(0\) \(0\) \(-2\) \(q-i q^{3}-q^{7}-i q^{11}+i q^{21}-i q^{27}+\cdots\)
3700.1.j.b 3700.j 37.d $2$ $1.847$ \(\Q(\sqrt{-1}) \) $S_{4}$ None None 740.1.t.a \(0\) \(0\) \(0\) \(2\) \(q+i q^{3}+q^{7}-i q^{11}+i q^{21}+i q^{27}+\cdots\)
3700.1.j.c 3700.j 37.d $2$ $1.847$ \(\Q(\sqrt{-1}) \) $S_{4}$ None None 148.1.f.a \(0\) \(0\) \(0\) \(2\) \(q-i q^{3}+q^{7}-i q^{11}+(i+1)q^{17}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(3700, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(3700, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(148, [\chi])\)\(^{\oplus 3}\)