Properties

Label 37030.2.a.q
Level 3703037030
Weight 22
Character orbit 37030.a
Self dual yes
Analytic conductor 295.686295.686
Dimension 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [37030,2,Mod(1,37030)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(37030, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("37030.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 37030=257232 37030 = 2 \cdot 5 \cdot 7 \cdot 23^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 37030.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 295.686038685295.686038685
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: not computed
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+q2+q4q5+q7+q83q9q10+4q112q13+q14+q16+6q173q18+4q19q20+4q22+q252q26+q282q29+12q99+O(q100) q + q^{2} + q^{4} - q^{5} + q^{7} + q^{8} - 3 q^{9} - q^{10} + 4 q^{11} - 2 q^{13} + q^{14} + q^{16} + 6 q^{17} - 3 q^{18} + 4 q^{19} - q^{20} + 4 q^{22} + q^{25} - 2 q^{26} + q^{28} - 2 q^{29}+ \cdots - 12 q^{99}+O(q^{100}) Copy content Toggle raw display

Atkin-Lehner signs

p p Sign
22 1 -1
55 +1 +1
77 1 -1
2323 1 -1

Inner twists

Inner twists of this newform have not been computed.

Twists

Twists of this newform have not been computed.