Properties

Label 3724.2.a
Level 37243724
Weight 22
Character orbit 3724.a
Rep. character χ3724(1,)\chi_{3724}(1,\cdot)
Character field Q\Q
Dimension 6161
Newform subspaces 1616
Sturm bound 11201120
Trace bound 55

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 3724=227219 3724 = 2^{2} \cdot 7^{2} \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3724.a (trivial)
Character field: Q\Q
Newform subspaces: 16 16
Sturm bound: 11201120
Trace bound: 55
Distinguishing TpT_p: 33

Dimensions

The following table gives the dimensions of various subspaces of M2(Γ0(3724))M_{2}(\Gamma_0(3724)).

Total New Old
Modular forms 584 61 523
Cusp forms 537 61 476
Eisenstein series 47 0 47

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

22771919FrickeDim
-++++-1515
-++-++1313
--++++1515
----1818
Plus space++2828
Minus space-3333

Trace form

61q+2q3+q5+61q95q114q132q15+3q17+q19+62q25+8q2710q29+4q31+2q332q378q3914q41+7q4311q45++3q99+O(q100) 61 q + 2 q^{3} + q^{5} + 61 q^{9} - 5 q^{11} - 4 q^{13} - 2 q^{15} + 3 q^{17} + q^{19} + 62 q^{25} + 8 q^{27} - 10 q^{29} + 4 q^{31} + 2 q^{33} - 2 q^{37} - 8 q^{39} - 14 q^{41} + 7 q^{43} - 11 q^{45}+ \cdots + 3 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(Γ0(3724))S_{2}^{\mathrm{new}}(\Gamma_0(3724)) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces A-L signs Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7} 2 7 19
3724.2.a.a 3724.a 1.a 11 29.73629.736 Q\Q None 76.2.a.a 00 2-2 11 00 - - - SU(2)\mathrm{SU}(2) q2q3+q5+q9+5q11+4q13+q-2q^{3}+q^{5}+q^{9}+5q^{11}+4q^{13}+\cdots
3724.2.a.b 3724.a 1.a 11 29.73629.736 Q\Q None 532.2.a.a 00 00 22 00 - - ++ SU(2)\mathrm{SU}(2) q+2q53q9+4q114q136q17+q+2q^{5}-3q^{9}+4q^{11}-4q^{13}-6q^{17}+\cdots
3724.2.a.c 3724.a 1.a 22 29.73629.736 Q(3)\Q(\sqrt{3}) None 532.2.i.a 00 2-2 00 00 - - ++ SU(2)\mathrm{SU}(2) q+(1+β)q3+(12β)q9+(3+2β)q11+q+(-1+\beta )q^{3}+(1-2\beta )q^{9}+(-3+2\beta )q^{11}+\cdots
3724.2.a.d 3724.a 1.a 22 29.73629.736 Q(5)\Q(\sqrt{5}) None 532.2.a.d 00 1-1 44 00 - - ++ SU(2)\mathrm{SU}(2) qβq3+(1+2β)q5+(2+β)q9+q-\beta q^{3}+(1+2\beta )q^{5}+(-2+\beta )q^{9}+\cdots
3724.2.a.e 3724.a 1.a 22 29.73629.736 Q(21)\Q(\sqrt{21}) None 532.2.a.c 00 11 6-6 00 - - ++ SU(2)\mathrm{SU}(2) q+βq33q5+(2+β)q9+(1β)q11+q+\beta q^{3}-3q^{5}+(2+\beta )q^{9}+(-1-\beta )q^{11}+\cdots
3724.2.a.f 3724.a 1.a 22 29.73629.736 Q(3)\Q(\sqrt{3}) None 532.2.i.a 00 22 00 00 - ++ - SU(2)\mathrm{SU}(2) q+(1+β)q3+(1+2β)q9+(32β)q11+q+(1+\beta )q^{3}+(1+2\beta )q^{9}+(-3-2\beta )q^{11}+\cdots
3724.2.a.g 3724.a 1.a 22 29.73629.736 Q(5)\Q(\sqrt{5}) None 532.2.a.b 00 33 22 00 - - - SU(2)\mathrm{SU}(2) q+(1+β)q3+q5+(1+3β)q9+(2+)q11+q+(1+\beta )q^{3}+q^{5}+(-1+3\beta )q^{9}+(-2+\cdots)q^{11}+\cdots
3724.2.a.h 3724.a 1.a 33 29.73629.736 3.3.404.1 None 532.2.i.b 00 2-2 3-3 00 - ++ - SU(2)\mathrm{SU}(2) q+(1+β1)q3+(1β1+β2)q5+q+(-1+\beta _{1})q^{3}+(-1-\beta _{1}+\beta _{2})q^{5}+\cdots
3724.2.a.i 3724.a 1.a 33 29.73629.736 3.3.733.1 None 532.2.a.e 00 11 2-2 00 - - - SU(2)\mathrm{SU}(2) q+β1q3+(1+β1+β2)q5+(2+β2)q9+q+\beta _{1}q^{3}+(-1+\beta _{1}+\beta _{2})q^{5}+(2+\beta _{2})q^{9}+\cdots
3724.2.a.j 3724.a 1.a 33 29.73629.736 3.3.404.1 None 532.2.i.b 00 22 33 00 - - ++ SU(2)\mathrm{SU}(2) q+(1β1)q3+(1+β1β2)q5+(1+)q9+q+(1-\beta _{1})q^{3}+(1+\beta _{1}-\beta _{2})q^{5}+(1+\cdots)q^{9}+\cdots
3724.2.a.k 3724.a 1.a 55 29.73629.736 5.5.11350832.1 None 3724.2.a.k 00 2-2 00 00 - - ++ SU(2)\mathrm{SU}(2) qβ1q3+β2q5+(1+β1+β2)q9+q-\beta _{1}q^{3}+\beta _{2}q^{5}+(1+\beta _{1}+\beta _{2})q^{9}+\cdots
3724.2.a.l 3724.a 1.a 55 29.73629.736 5.5.11350832.1 None 3724.2.a.k 00 22 00 00 - - - SU(2)\mathrm{SU}(2) q+β1q3β2q5+(1+β1+β2)q9+q+\beta _{1}q^{3}-\beta _{2}q^{5}+(1+\beta _{1}+\beta _{2})q^{9}+\cdots
3724.2.a.m 3724.a 1.a 77 29.73629.736 Q[x]/(x7)\mathbb{Q}[x]/(x^{7} - \cdots) None 532.2.i.c 00 00 2-2 00 - ++ ++ SU(2)\mathrm{SU}(2) qβ1q3β6q5+(2β4+β5)q9+q-\beta _{1}q^{3}-\beta _{6}q^{5}+(2-\beta _{4}+\beta _{5})q^{9}+\cdots
3724.2.a.n 3724.a 1.a 77 29.73629.736 Q[x]/(x7)\mathbb{Q}[x]/(x^{7} - \cdots) None 532.2.i.c 00 00 22 00 - - - SU(2)\mathrm{SU}(2) q+β1q3+β6q5+(2β4+β5)q9+q+\beta _{1}q^{3}+\beta _{6}q^{5}+(2-\beta _{4}+\beta _{5})q^{9}+\cdots
3724.2.a.o 3724.a 1.a 88 29.73629.736 Q[x]/(x8)\mathbb{Q}[x]/(x^{8} - \cdots) None 3724.2.a.o 00 4-4 00 00 - ++ - SU(2)\mathrm{SU}(2) qβ1q3β2q5+(β1+β2+β3)q9+q-\beta _{1}q^{3}-\beta _{2}q^{5}+(\beta _{1}+\beta _{2}+\beta _{3})q^{9}+\cdots
3724.2.a.p 3724.a 1.a 88 29.73629.736 Q[x]/(x8)\mathbb{Q}[x]/(x^{8} - \cdots) None 3724.2.a.o 00 44 00 00 - ++ ++ SU(2)\mathrm{SU}(2) q+β1q3+β2q5+(β1+β2+β3)q9+q+\beta _{1}q^{3}+\beta _{2}q^{5}+(\beta _{1}+\beta _{2}+\beta _{3})q^{9}+\cdots

Decomposition of S2old(Γ0(3724))S_{2}^{\mathrm{old}}(\Gamma_0(3724)) into lower level spaces