Properties

Label 3724.2.cv
Level 37243724
Weight 22
Character orbit 3724.cv
Rep. character χ3724(121,)\chi_{3724}(121,\cdot)
Character field Q(ζ21)\Q(\zeta_{21})
Dimension 11281128
Sturm bound 11201120

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 3724=227219 3724 = 2^{2} \cdot 7^{2} \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3724.cv (of order 2121 and degree 1212)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 931 931
Character field: Q(ζ21)\Q(\zeta_{21})
Sturm bound: 11201120

Dimensions

The following table gives the dimensions of various subspaces of M2(3724,[χ])M_{2}(3724, [\chi]).

Total New Old
Modular forms 6792 1128 5664
Cusp forms 6648 1128 5520
Eisenstein series 144 0 144

Trace form

1128q+2q32q54q7+96q9+10q11+4q133q15+4q17+3q1911q212q23198q2528q27+2q29+7q3116q3321q35+3q37++58q99+O(q100) 1128 q + 2 q^{3} - 2 q^{5} - 4 q^{7} + 96 q^{9} + 10 q^{11} + 4 q^{13} - 3 q^{15} + 4 q^{17} + 3 q^{19} - 11 q^{21} - 2 q^{23} - 198 q^{25} - 28 q^{27} + 2 q^{29} + 7 q^{31} - 16 q^{33} - 21 q^{35} + 3 q^{37}+ \cdots + 58 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(3724,[χ])S_{2}^{\mathrm{new}}(3724, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S2old(3724,[χ])S_{2}^{\mathrm{old}}(3724, [\chi]) into lower level spaces

S2old(3724,[χ]) S_{2}^{\mathrm{old}}(3724, [\chi]) \simeq S2new(931,[χ])S_{2}^{\mathrm{new}}(931, [\chi])3^{\oplus 3}\oplusS2new(1862,[χ])S_{2}^{\mathrm{new}}(1862, [\chi])2^{\oplus 2}