Properties

Label 3724.2.cw
Level 37243724
Weight 22
Character orbit 3724.cw
Rep. character χ3724(505,)\chi_{3724}(505,\cdot)
Character field Q(ζ21)\Q(\zeta_{21})
Dimension 11041104
Sturm bound 11201120

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 3724=227219 3724 = 2^{2} \cdot 7^{2} \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3724.cw (of order 2121 and degree 1212)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 931 931
Character field: Q(ζ21)\Q(\zeta_{21})
Sturm bound: 11201120

Dimensions

The following table gives the dimensions of various subspaces of M2(3724,[χ])M_{2}(3724, [\chi]).

Total New Old
Modular forms 6792 1104 5688
Cusp forms 6648 1104 5544
Eisenstein series 144 0 144

Trace form

1104q2q5+88q92q11+6q13+6q15+7q17+16q194q21+4q23+82q2512q274q29+8q33+12q352q37+16q39+12q4118q43+116q99+O(q100) 1104 q - 2 q^{5} + 88 q^{9} - 2 q^{11} + 6 q^{13} + 6 q^{15} + 7 q^{17} + 16 q^{19} - 4 q^{21} + 4 q^{23} + 82 q^{25} - 12 q^{27} - 4 q^{29} + 8 q^{33} + 12 q^{35} - 2 q^{37} + 16 q^{39} + 12 q^{41} - 18 q^{43}+ \cdots - 116 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(3724,[χ])S_{2}^{\mathrm{new}}(3724, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S2old(3724,[χ])S_{2}^{\mathrm{old}}(3724, [\chi]) into lower level spaces

S2old(3724,[χ]) S_{2}^{\mathrm{old}}(3724, [\chi]) \simeq S2new(931,[χ])S_{2}^{\mathrm{new}}(931, [\chi])3^{\oplus 3}\oplusS2new(1862,[χ])S_{2}^{\mathrm{new}}(1862, [\chi])2^{\oplus 2}