Properties

Label 3744.1
Level 3744
Weight 1
Dimension 96
Nonzero newspaces 11
Newform subspaces 22
Sturm bound 774144
Trace bound 25

Downloads

Learn more

Defining parameters

Level: N N = 3744=253213 3744 = 2^{5} \cdot 3^{2} \cdot 13
Weight: k k = 1 1
Nonzero newspaces: 11 11
Newform subspaces: 22 22
Sturm bound: 774144774144
Trace bound: 2525

Dimensions

The following table gives the dimensions of various subspaces of M1(Γ1(3744))M_{1}(\Gamma_1(3744)).

Total New Old
Modular forms 6972 1086 5886
Cusp forms 828 96 732
Eisenstein series 6144 990 5154

The following table gives the dimensions of subspaces with specified projective image type.

DnD_n A4A_4 S4S_4 A5A_5
Dimension 84 12 0 0

Trace form

96q+4q52q92q13+16q2210q25+6q274q33+14q352q37+8q416q434q4512q49+6q5116q554q57+10q65+20q73++6q97+O(q100) 96 q + 4 q^{5} - 2 q^{9} - 2 q^{13} + 16 q^{22} - 10 q^{25} + 6 q^{27} - 4 q^{33} + 14 q^{35} - 2 q^{37} + 8 q^{41} - 6 q^{43} - 4 q^{45} - 12 q^{49} + 6 q^{51} - 16 q^{55} - 4 q^{57} + 10 q^{65} + 20 q^{73}+ \cdots + 6 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S1new(Γ1(3744))S_{1}^{\mathrm{new}}(\Gamma_1(3744))

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
3744.1.b χ3744(1169,)\chi_{3744}(1169, \cdot) None 0 1
3744.1.e χ3744(2575,)\chi_{3744}(2575, \cdot) None 0 1
3744.1.f χ3744(3329,)\chi_{3744}(3329, \cdot) None 0 1
3744.1.i χ3744(415,)\chi_{3744}(415, \cdot) None 0 1
3744.1.k χ3744(703,)\chi_{3744}(703, \cdot) None 0 1
3744.1.l χ3744(3041,)\chi_{3744}(3041, \cdot) 3744.1.l.a 4 1
3744.1.l.b 4
3744.1.l.c 4
3744.1.o χ3744(2287,)\chi_{3744}(2287, \cdot) 3744.1.o.a 1 1
3744.1.o.b 1
3744.1.o.c 4
3744.1.p χ3744(1457,)\chi_{3744}(1457, \cdot) None 0 1
3744.1.v χ3744(1799,)\chi_{3744}(1799, \cdot) None 0 2
3744.1.w χ3744(1513,)\chi_{3744}(1513, \cdot) None 0 2
3744.1.z χ3744(521,)\chi_{3744}(521, \cdot) None 0 2
3744.1.bb χ3744(1351,)\chi_{3744}(1351, \cdot) None 0 2
3744.1.bc χ3744(1009,)\chi_{3744}(1009, \cdot) None 0 2
3744.1.bd χ3744(577,)\chi_{3744}(577, \cdot) 3744.1.bd.a 2 2
3744.1.bd.b 2
3744.1.bd.c 2
3744.1.bd.d 2
3744.1.bd.e 2
3744.1.bg χ3744(863,)\chi_{3744}(863, \cdot) None 0 2
3744.1.bh χ3744(1295,)\chi_{3744}(1295, \cdot) None 0 2
3744.1.bl χ3744(233,)\chi_{3744}(233, \cdot) None 0 2
3744.1.bn χ3744(1639,)\chi_{3744}(1639, \cdot) None 0 2
3744.1.bo χ3744(73,)\chi_{3744}(73, \cdot) None 0 2
3744.1.br χ3744(359,)\chi_{3744}(359, \cdot) None 0 2
3744.1.bs χ3744(127,)\chi_{3744}(127, \cdot) None 0 2
3744.1.bv χ3744(737,)\chi_{3744}(737, \cdot) 3744.1.bv.a 8 2
3744.1.bw χ3744(2863,)\chi_{3744}(2863, \cdot) None 0 2
3744.1.bz χ3744(17,)\chi_{3744}(17, \cdot) None 0 2
3744.1.cb χ3744(257,)\chi_{3744}(257, \cdot) None 0 2
3744.1.cc χ3744(3103,)\chi_{3744}(3103, \cdot) 3744.1.cc.a 4 2
3744.1.ce χ3744(3247,)\chi_{3744}(3247, \cdot) None 0 2
3744.1.cg χ3744(209,)\chi_{3744}(209, \cdot) None 0 2
3744.1.ci χ3744(1039,)\chi_{3744}(1039, \cdot) 3744.1.ci.a 6 2
3744.1.ci.b 6
3744.1.cj χ3744(113,)\chi_{3744}(113, \cdot) None 0 2
3744.1.ck χ3744(607,)\chi_{3744}(607, \cdot) 3744.1.ck.a 4 2
3744.1.cm χ3744(545,)\chi_{3744}(545, \cdot) None 0 2
3744.1.cp χ3744(1951,)\chi_{3744}(1951, \cdot) None 0 2
3744.1.cr χ3744(1505,)\chi_{3744}(1505, \cdot) None 0 2
3744.1.cs χ3744(1361,)\chi_{3744}(1361, \cdot) None 0 2
3744.1.ct χ3744(751,)\chi_{3744}(751, \cdot) None 0 2
3744.1.cv χ3744(1231,)\chi_{3744}(1231, \cdot) None 0 2
3744.1.cy χ3744(2129,)\chi_{3744}(2129, \cdot) None 0 2
3744.1.da χ3744(1985,)\chi_{3744}(1985, \cdot) None 0 2
3744.1.dc χ3744(1663,)\chi_{3744}(1663, \cdot) None 0 2
3744.1.dd χ3744(833,)\chi_{3744}(833, \cdot) None 0 2
3744.1.df χ3744(1375,)\chi_{3744}(1375, \cdot) None 0 2
3744.1.di χ3744(1265,)\chi_{3744}(1265, \cdot) None 0 2
3744.1.dk χ3744(79,)\chi_{3744}(79, \cdot) None 0 2
3744.1.dl χ3744(2417,)\chi_{3744}(2417, \cdot) None 0 2
3744.1.dn χ3744(367,)\chi_{3744}(367, \cdot) None 0 2
3744.1.dp χ3744(511,)\chi_{3744}(511, \cdot) None 0 2
3744.1.ds χ3744(1121,)\chi_{3744}(1121, \cdot) None 0 2
3744.1.dt χ3744(1745,)\chi_{3744}(1745, \cdot) None 0 2
3744.1.du χ3744(1135,)\chi_{3744}(1135, \cdot) None 0 2
3744.1.dx χ3744(1889,)\chi_{3744}(1889, \cdot) 3744.1.dx.a 8 2
3744.1.dy χ3744(991,)\chi_{3744}(991, \cdot) 3744.1.dy.a 4 2
3744.1.ea χ3744(827,)\chi_{3744}(827, \cdot) None 0 4
3744.1.ec χ3744(541,)\chi_{3744}(541, \cdot) None 0 4
3744.1.ef χ3744(235,)\chi_{3744}(235, \cdot) None 0 4
3744.1.eh χ3744(883,)\chi_{3744}(883, \cdot) 3744.1.eh.a 16 4
3744.1.ei χ3744(701,)\chi_{3744}(701, \cdot) None 0 4
3744.1.ek χ3744(53,)\chi_{3744}(53, \cdot) None 0 4
3744.1.en χ3744(395,)\chi_{3744}(395, \cdot) None 0 4
3744.1.ep χ3744(109,)\chi_{3744}(109, \cdot) None 0 4
3744.1.er χ3744(505,)\chi_{3744}(505, \cdot) None 0 4
3744.1.es χ3744(71,)\chi_{3744}(71, \cdot) None 0 4
3744.1.ev χ3744(409,)\chi_{3744}(409, \cdot) None 0 4
3744.1.ex χ3744(167,)\chi_{3744}(167, \cdot) None 0 4
3744.1.ez χ3744(1175,)\chi_{3744}(1175, \cdot) None 0 4
3744.1.fa χ3744(889,)\chi_{3744}(889, \cdot) None 0 4
3744.1.fc χ3744(1129,)\chi_{3744}(1129, \cdot) None 0 4
3744.1.fe χ3744(119,)\chi_{3744}(119, \cdot) None 0 4
3744.1.fh χ3744(1447,)\chi_{3744}(1447, \cdot) None 0 4
3744.1.fj χ3744(185,)\chi_{3744}(185, \cdot) None 0 4
3744.1.fk χ3744(857,)\chi_{3744}(857, \cdot) None 0 4
3744.1.fm χ3744(55,)\chi_{3744}(55, \cdot) None 0 4
3744.1.fn χ3744(1303,)\chi_{3744}(1303, \cdot) None 0 4
3744.1.fq χ3744(953,)\chi_{3744}(953, \cdot) None 0 4
3744.1.fr χ3744(329,)\chi_{3744}(329, \cdot) None 0 4
3744.1.fu χ3744(391,)\chi_{3744}(391, \cdot) None 0 4
3744.1.fy χ3744(385,)\chi_{3744}(385, \cdot) None 0 4
3744.1.fz χ3744(1201,)\chi_{3744}(1201, \cdot) None 0 4
3744.1.ga χ3744(1103,)\chi_{3744}(1103, \cdot) None 0 4
3744.1.gb χ3744(1631,)\chi_{3744}(1631, \cdot) None 0 4
3744.1.gg χ3744(431,)\chi_{3744}(431, \cdot) None 0 4
3744.1.gh χ3744(1151,)\chi_{3744}(1151, \cdot) None 0 4
3744.1.gi χ3744(383,)\chi_{3744}(383, \cdot) None 0 4
3744.1.gj χ3744(527,)\chi_{3744}(527, \cdot) None 0 4
3744.1.gm χ3744(97,)\chi_{3744}(97, \cdot) None 0 4
3744.1.gn χ3744(241,)\chi_{3744}(241, \cdot) None 0 4
3744.1.gs χ3744(865,)\chi_{3744}(865, \cdot) 3744.1.gs.a 4 4
3744.1.gs.b 4
3744.1.gs.c 4
3744.1.gt χ3744(145,)\chi_{3744}(145, \cdot) None 0 4
3744.1.gu χ3744(817,)\chi_{3744}(817, \cdot) None 0 4
3744.1.gv χ3744(1345,)\chi_{3744}(1345, \cdot) None 0 4
3744.1.ha χ3744(47,)\chi_{3744}(47, \cdot) None 0 4
3744.1.hb χ3744(671,)\chi_{3744}(671, \cdot) None 0 4
3744.1.hc χ3744(1145,)\chi_{3744}(1145, \cdot) None 0 4
3744.1.he χ3744(199,)\chi_{3744}(199, \cdot) None 0 4
3744.1.hf χ3744(439,)\chi_{3744}(439, \cdot) None 0 4
3744.1.hi χ3744(809,)\chi_{3744}(809, \cdot) None 0 4
3744.1.hj χ3744(1049,)\chi_{3744}(1049, \cdot) None 0 4
3744.1.hm χ3744(103,)\chi_{3744}(103, \cdot) None 0 4
3744.1.hp χ3744(295,)\chi_{3744}(295, \cdot) None 0 4
3744.1.hr χ3744(1193,)\chi_{3744}(1193, \cdot) None 0 4
3744.1.hs χ3744(1319,)\chi_{3744}(1319, \cdot) None 0 4
3744.1.hu χ3744(265,)\chi_{3744}(265, \cdot) None 0 4
3744.1.hw χ3744(1033,)\chi_{3744}(1033, \cdot) None 0 4
3744.1.hz χ3744(743,)\chi_{3744}(743, \cdot) None 0 4
3744.1.ib χ3744(551,)\chi_{3744}(551, \cdot) None 0 4
3744.1.id χ3744(457,)\chi_{3744}(457, \cdot) None 0 4
3744.1.ie χ3744(1367,)\chi_{3744}(1367, \cdot) None 0 4
3744.1.ih χ3744(1081,)\chi_{3744}(1081, \cdot) None 0 4
3744.1.ii χ3744(565,)\chi_{3744}(565, \cdot) None 0 8
3744.1.ik χ3744(227,)\chi_{3744}(227, \cdot) None 0 8
3744.1.im χ3744(515,)\chi_{3744}(515, \cdot) None 0 8
3744.1.io χ3744(37,)\chi_{3744}(37, \cdot) None 0 8
3744.1.ip χ3744(85,)\chi_{3744}(85, \cdot) None 0 8
3744.1.is χ3744(587,)\chi_{3744}(587, \cdot) None 0 8
3744.1.it χ3744(323,)\chi_{3744}(323, \cdot) None 0 8
3744.1.iw χ3744(229,)\chi_{3744}(229, \cdot) None 0 8
3744.1.iy χ3744(259,)\chi_{3744}(259, \cdot) None 0 8
3744.1.ja χ3744(547,)\chi_{3744}(547, \cdot) None 0 8
3744.1.jc χ3744(413,)\chi_{3744}(413, \cdot) None 0 8
3744.1.jf χ3744(653,)\chi_{3744}(653, \cdot) None 0 8
3744.1.jh χ3744(29,)\chi_{3744}(29, \cdot) None 0 8
3744.1.jj χ3744(173,)\chi_{3744}(173, \cdot) None 0 8
3744.1.jl χ3744(101,)\chi_{3744}(101, \cdot) None 0 8
3744.1.jm χ3744(269,)\chi_{3744}(269, \cdot) None 0 8
3744.1.jp χ3744(451,)\chi_{3744}(451, \cdot) None 0 8
3744.1.jq χ3744(43,)\chi_{3744}(43, \cdot) None 0 8
3744.1.js χ3744(355,)\chi_{3744}(355, \cdot) None 0 8
3744.1.ju χ3744(211,)\chi_{3744}(211, \cdot) None 0 8
3744.1.jw χ3744(139,)\chi_{3744}(139, \cdot) None 0 8
3744.1.jz χ3744(595,)\chi_{3744}(595, \cdot) None 0 8
3744.1.kb χ3744(365,)\chi_{3744}(365, \cdot) None 0 8
3744.1.kd χ3744(77,)\chi_{3744}(77, \cdot) None 0 8
3744.1.kf χ3744(83,)\chi_{3744}(83, \cdot) None 0 8
3744.1.ki χ3744(397,)\chi_{3744}(397, \cdot) None 0 8
3744.1.kj χ3744(349,)\chi_{3744}(349, \cdot) None 0 8
3744.1.km χ3744(11,)\chi_{3744}(11, \cdot) None 0 8
3744.1.kn χ3744(683,)\chi_{3744}(683, \cdot) None 0 8
3744.1.kp χ3744(421,)\chi_{3744}(421, \cdot) None 0 8
3744.1.kr χ3744(301,)\chi_{3744}(301, \cdot) None 0 8
3744.1.kt χ3744(371,)\chi_{3744}(371, \cdot) None 0 8

Decomposition of S1old(Γ1(3744))S_{1}^{\mathrm{old}}(\Gamma_1(3744)) into lower level spaces

S1old(Γ1(3744)) S_{1}^{\mathrm{old}}(\Gamma_1(3744)) \cong S1new(Γ1(1))S_{1}^{\mathrm{new}}(\Gamma_1(1))36^{\oplus 36}\oplusS1new(Γ1(2))S_{1}^{\mathrm{new}}(\Gamma_1(2))30^{\oplus 30}\oplusS1new(Γ1(3))S_{1}^{\mathrm{new}}(\Gamma_1(3))24^{\oplus 24}\oplusS1new(Γ1(4))S_{1}^{\mathrm{new}}(\Gamma_1(4))24^{\oplus 24}\oplusS1new(Γ1(6))S_{1}^{\mathrm{new}}(\Gamma_1(6))20^{\oplus 20}\oplusS1new(Γ1(8))S_{1}^{\mathrm{new}}(\Gamma_1(8))18^{\oplus 18}\oplusS1new(Γ1(9))S_{1}^{\mathrm{new}}(\Gamma_1(9))12^{\oplus 12}\oplusS1new(Γ1(12))S_{1}^{\mathrm{new}}(\Gamma_1(12))16^{\oplus 16}\oplusS1new(Γ1(13))S_{1}^{\mathrm{new}}(\Gamma_1(13))18^{\oplus 18}\oplusS1new(Γ1(16))S_{1}^{\mathrm{new}}(\Gamma_1(16))12^{\oplus 12}\oplusS1new(Γ1(18))S_{1}^{\mathrm{new}}(\Gamma_1(18))10^{\oplus 10}\oplusS1new(Γ1(24))S_{1}^{\mathrm{new}}(\Gamma_1(24))12^{\oplus 12}\oplusS1new(Γ1(26))S_{1}^{\mathrm{new}}(\Gamma_1(26))15^{\oplus 15}\oplusS1new(Γ1(32))S_{1}^{\mathrm{new}}(\Gamma_1(32))6^{\oplus 6}\oplusS1new(Γ1(36))S_{1}^{\mathrm{new}}(\Gamma_1(36))8^{\oplus 8}\oplusS1new(Γ1(39))S_{1}^{\mathrm{new}}(\Gamma_1(39))12^{\oplus 12}\oplusS1new(Γ1(48))S_{1}^{\mathrm{new}}(\Gamma_1(48))8^{\oplus 8}\oplusS1new(Γ1(52))S_{1}^{\mathrm{new}}(\Gamma_1(52))12^{\oplus 12}\oplusS1new(Γ1(72))S_{1}^{\mathrm{new}}(\Gamma_1(72))6^{\oplus 6}\oplusS1new(Γ1(78))S_{1}^{\mathrm{new}}(\Gamma_1(78))10^{\oplus 10}\oplusS1new(Γ1(96))S_{1}^{\mathrm{new}}(\Gamma_1(96))4^{\oplus 4}\oplusS1new(Γ1(104))S_{1}^{\mathrm{new}}(\Gamma_1(104))9^{\oplus 9}\oplusS1new(Γ1(117))S_{1}^{\mathrm{new}}(\Gamma_1(117))6^{\oplus 6}\oplusS1new(Γ1(144))S_{1}^{\mathrm{new}}(\Gamma_1(144))4^{\oplus 4}\oplusS1new(Γ1(156))S_{1}^{\mathrm{new}}(\Gamma_1(156))8^{\oplus 8}\oplusS1new(Γ1(208))S_{1}^{\mathrm{new}}(\Gamma_1(208))6^{\oplus 6}\oplusS1new(Γ1(234))S_{1}^{\mathrm{new}}(\Gamma_1(234))5^{\oplus 5}\oplusS1new(Γ1(288))S_{1}^{\mathrm{new}}(\Gamma_1(288))2^{\oplus 2}\oplusS1new(Γ1(312))S_{1}^{\mathrm{new}}(\Gamma_1(312))6^{\oplus 6}\oplusS1new(Γ1(416))S_{1}^{\mathrm{new}}(\Gamma_1(416))3^{\oplus 3}\oplusS1new(Γ1(468))S_{1}^{\mathrm{new}}(\Gamma_1(468))4^{\oplus 4}\oplusS1new(Γ1(624))S_{1}^{\mathrm{new}}(\Gamma_1(624))4^{\oplus 4}\oplusS1new(Γ1(936))S_{1}^{\mathrm{new}}(\Gamma_1(936))3^{\oplus 3}\oplusS1new(Γ1(1248))S_{1}^{\mathrm{new}}(\Gamma_1(1248))2^{\oplus 2}\oplusS1new(Γ1(1872))S_{1}^{\mathrm{new}}(\Gamma_1(1872))2^{\oplus 2}