Properties

Label 3744.2.cq
Level 37443744
Weight 22
Character orbit 3744.cq
Rep. character χ3744(2545,)\chi_{3744}(2545,\cdot)
Character field Q(ζ6)\Q(\zeta_{6})
Dimension 328328
Sturm bound 13441344

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 3744=253213 3744 = 2^{5} \cdot 3^{2} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3744.cq (of order 66 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 936 936
Character field: Q(ζ6)\Q(\zeta_{6})
Sturm bound: 13441344

Dimensions

The following table gives the dimensions of various subspaces of M2(3744,[χ])M_{2}(3744, [\chi]).

Total New Old
Modular forms 1376 344 1032
Cusp forms 1312 328 984
Eisenstein series 64 16 48

Trace form

328q+6q72q9+6q154q17+22q23152q256q33+22q396q41+142q496q55+6q63+18q65+12q71+4q792q8134q8712q89+6q97+O(q100) 328 q + 6 q^{7} - 2 q^{9} + 6 q^{15} - 4 q^{17} + 22 q^{23} - 152 q^{25} - 6 q^{33} + 22 q^{39} - 6 q^{41} + 142 q^{49} - 6 q^{55} + 6 q^{63} + 18 q^{65} + 12 q^{71} + 4 q^{79} - 2 q^{81} - 34 q^{87} - 12 q^{89}+ \cdots - 6 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(3744,[χ])S_{2}^{\mathrm{new}}(3744, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S2old(3744,[χ])S_{2}^{\mathrm{old}}(3744, [\chi]) into lower level spaces

S2old(3744,[χ]) S_{2}^{\mathrm{old}}(3744, [\chi]) \simeq S2new(936,[χ])S_{2}^{\mathrm{new}}(936, [\chi])3^{\oplus 3}