Properties

Label 3744.2.cz
Level 37443744
Weight 22
Character orbit 3744.cz
Rep. character χ3744(1777,)\chi_{3744}(1777,\cdot)
Character field Q(ζ6)\Q(\zeta_{6})
Dimension 328328
Sturm bound 13441344

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 3744=253213 3744 = 2^{5} \cdot 3^{2} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3744.cz (of order 66 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 936 936
Character field: Q(ζ6)\Q(\zeta_{6})
Sturm bound: 13441344

Dimensions

The following table gives the dimensions of various subspaces of M2(3744,[χ])M_{2}(3744, [\chi]).

Total New Old
Modular forms 1376 344 1032
Cusp forms 1312 328 984
Eisenstein series 64 16 48

Trace form

328q2q72q9+14q154q17+22q23+144q25+4q31+22q332q39+2q41+4q47138q49+14q5520q5726q6322q65+4q71++2q97+O(q100) 328 q - 2 q^{7} - 2 q^{9} + 14 q^{15} - 4 q^{17} + 22 q^{23} + 144 q^{25} + 4 q^{31} + 22 q^{33} - 2 q^{39} + 2 q^{41} + 4 q^{47} - 138 q^{49} + 14 q^{55} - 20 q^{57} - 26 q^{63} - 22 q^{65} + 4 q^{71}+ \cdots + 2 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(3744,[χ])S_{2}^{\mathrm{new}}(3744, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S2old(3744,[χ])S_{2}^{\mathrm{old}}(3744, [\chi]) into lower level spaces

S2old(3744,[χ]) S_{2}^{\mathrm{old}}(3744, [\chi]) \simeq S2new(936,[χ])S_{2}^{\mathrm{new}}(936, [\chi])3^{\oplus 3}