Properties

Label 3744.2.dj
Level 37443744
Weight 22
Character orbit 3744.dj
Rep. character χ3744(1535,)\chi_{3744}(1535,\cdot)
Character field Q(ζ6)\Q(\zeta_{6})
Dimension 288288
Sturm bound 13441344

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 3744=253213 3744 = 2^{5} \cdot 3^{2} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3744.dj (of order 66 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 36 36
Character field: Q(ζ6)\Q(\zeta_{6})
Sturm bound: 13441344

Dimensions

The following table gives the dimensions of various subspaces of M2(3744,[χ])M_{2}(3744, [\chi]).

Total New Old
Modular forms 1376 288 1088
Cusp forms 1312 288 1024
Eisenstein series 64 0 64

Trace form

288q+8q916q21+144q2548q29+40q33+72q41+16q45+144q49+40q5732q6948q7324q81+96q9324q97+O(q100) 288 q + 8 q^{9} - 16 q^{21} + 144 q^{25} - 48 q^{29} + 40 q^{33} + 72 q^{41} + 16 q^{45} + 144 q^{49} + 40 q^{57} - 32 q^{69} - 48 q^{73} - 24 q^{81} + 96 q^{93} - 24 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(3744,[χ])S_{2}^{\mathrm{new}}(3744, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S2old(3744,[χ])S_{2}^{\mathrm{old}}(3744, [\chi]) into lower level spaces

S2old(3744,[χ]) S_{2}^{\mathrm{old}}(3744, [\chi]) \simeq S2new(36,[χ])S_{2}^{\mathrm{new}}(36, [\chi])8^{\oplus 8}\oplusS2new(144,[χ])S_{2}^{\mathrm{new}}(144, [\chi])4^{\oplus 4}\oplusS2new(288,[χ])S_{2}^{\mathrm{new}}(288, [\chi])2^{\oplus 2}\oplusS2new(468,[χ])S_{2}^{\mathrm{new}}(468, [\chi])4^{\oplus 4}\oplusS2new(1872,[χ])S_{2}^{\mathrm{new}}(1872, [\chi])2^{\oplus 2}