Properties

Label 3744.2.fw
Level 37443744
Weight 22
Character orbit 3744.fw
Rep. character χ3744(31,)\chi_{3744}(31,\cdot)
Character field Q(ζ12)\Q(\zeta_{12})
Dimension 672672
Sturm bound 13441344

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 3744=253213 3744 = 2^{5} \cdot 3^{2} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3744.fw (of order 1212 and degree 44)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 468 468
Character field: Q(ζ12)\Q(\zeta_{12})
Sturm bound: 13441344

Dimensions

The following table gives the dimensions of various subspaces of M2(3744,[χ])M_{2}(3744, [\chi]).

Total New Old
Modular forms 2752 672 2080
Cusp forms 2624 672 1952
Eisenstein series 128 0 128

Trace form

672q32q57+32q93+O(q100) 672 q - 32 q^{57} + 32 q^{93}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(3744,[χ])S_{2}^{\mathrm{new}}(3744, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S2old(3744,[χ])S_{2}^{\mathrm{old}}(3744, [\chi]) into lower level spaces

S2old(3744,[χ]) S_{2}^{\mathrm{old}}(3744, [\chi]) \simeq S2new(468,[χ])S_{2}^{\mathrm{new}}(468, [\chi])4^{\oplus 4}\oplusS2new(1872,[χ])S_{2}^{\mathrm{new}}(1872, [\chi])2^{\oplus 2}