Properties

Label 3744.2.gq
Level 37443744
Weight 22
Character orbit 3744.gq
Rep. character χ3744(175,)\chi_{3744}(175,\cdot)
Character field Q(ζ12)\Q(\zeta_{12})
Dimension 656656
Sturm bound 13441344

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 3744=253213 3744 = 2^{5} \cdot 3^{2} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3744.gq (of order 1212 and degree 44)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 936 936
Character field: Q(ζ12)\Q(\zeta_{12})
Sturm bound: 13441344

Dimensions

The following table gives the dimensions of various subspaces of M2(3744,[χ])M_{2}(3744, [\chi]).

Total New Old
Modular forms 2752 688 2064
Cusp forms 2624 656 1968
Eisenstein series 128 32 96

Trace form

656q+4q34q9+4q1124q17+16q19+16q2732q33+8q354q41+12q4312q49+4q57+52q594q65+4q6716q73+48q754q81++36q99+O(q100) 656 q + 4 q^{3} - 4 q^{9} + 4 q^{11} - 24 q^{17} + 16 q^{19} + 16 q^{27} - 32 q^{33} + 8 q^{35} - 4 q^{41} + 12 q^{43} - 12 q^{49} + 4 q^{57} + 52 q^{59} - 4 q^{65} + 4 q^{67} - 16 q^{73} + 48 q^{75} - 4 q^{81}+ \cdots + 36 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(3744,[χ])S_{2}^{\mathrm{new}}(3744, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S2old(3744,[χ])S_{2}^{\mathrm{old}}(3744, [\chi]) into lower level spaces

S2old(3744,[χ]) S_{2}^{\mathrm{old}}(3744, [\chi]) \simeq S2new(936,[χ])S_{2}^{\mathrm{new}}(936, [\chi])3^{\oplus 3}