Properties

Label 3744.2.gq
Level $3744$
Weight $2$
Character orbit 3744.gq
Rep. character $\chi_{3744}(175,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $656$
Sturm bound $1344$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3744 = 2^{5} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3744.gq (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 936 \)
Character field: \(\Q(\zeta_{12})\)
Sturm bound: \(1344\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3744, [\chi])\).

Total New Old
Modular forms 2752 688 2064
Cusp forms 2624 656 1968
Eisenstein series 128 32 96

Trace form

\( 656 q + 4 q^{3} - 4 q^{9} + 4 q^{11} - 24 q^{17} + 16 q^{19} + 16 q^{27} - 32 q^{33} + 8 q^{35} - 4 q^{41} + 12 q^{43} - 12 q^{49} + 4 q^{57} + 52 q^{59} - 4 q^{65} + 4 q^{67} - 16 q^{73} + 48 q^{75} - 4 q^{81}+ \cdots + 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3744, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3744, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3744, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(936, [\chi])\)\(^{\oplus 3}\)