Properties

Label 3744.2.jo
Level $3744$
Weight $2$
Character orbit 3744.jo
Rep. character $\chi_{3744}(829,\cdot)$
Character field $\Q(\zeta_{24})$
Dimension $2224$
Sturm bound $1344$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3744 = 2^{5} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3744.jo (of order \(24\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 416 \)
Character field: \(\Q(\zeta_{24})\)
Sturm bound: \(1344\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3744, [\chi])\).

Total New Old
Modular forms 5440 2256 3184
Cusp forms 5312 2224 3088
Eisenstein series 128 32 96

Trace form

\( 2224 q + 12 q^{2} - 4 q^{4} - 12 q^{7} - 4 q^{10} + 12 q^{11} - 8 q^{13} - 16 q^{14} - 4 q^{16} - 12 q^{19} + 60 q^{20} + 12 q^{22} + 4 q^{23} - 16 q^{25} + 48 q^{26} - 72 q^{28} + 4 q^{29} + 72 q^{32}+ \cdots + 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3744, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3744, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3744, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(416, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1248, [\chi])\)\(^{\oplus 2}\)