Properties

Label 3744.2.jo
Level 37443744
Weight 22
Character orbit 3744.jo
Rep. character χ3744(829,)\chi_{3744}(829,\cdot)
Character field Q(ζ24)\Q(\zeta_{24})
Dimension 22242224
Sturm bound 13441344

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 3744=253213 3744 = 2^{5} \cdot 3^{2} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3744.jo (of order 2424 and degree 88)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 416 416
Character field: Q(ζ24)\Q(\zeta_{24})
Sturm bound: 13441344

Dimensions

The following table gives the dimensions of various subspaces of M2(3744,[χ])M_{2}(3744, [\chi]).

Total New Old
Modular forms 5440 2256 3184
Cusp forms 5312 2224 3088
Eisenstein series 128 32 96

Trace form

2224q+12q24q412q74q10+12q118q1316q144q1612q19+60q20+12q22+4q2316q25+48q2672q28+4q29+72q32++12q98+O(q100) 2224 q + 12 q^{2} - 4 q^{4} - 12 q^{7} - 4 q^{10} + 12 q^{11} - 8 q^{13} - 16 q^{14} - 4 q^{16} - 12 q^{19} + 60 q^{20} + 12 q^{22} + 4 q^{23} - 16 q^{25} + 48 q^{26} - 72 q^{28} + 4 q^{29} + 72 q^{32}+ \cdots + 12 q^{98}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(3744,[χ])S_{2}^{\mathrm{new}}(3744, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S2old(3744,[χ])S_{2}^{\mathrm{old}}(3744, [\chi]) into lower level spaces

S2old(3744,[χ]) S_{2}^{\mathrm{old}}(3744, [\chi]) \simeq S2new(416,[χ])S_{2}^{\mathrm{new}}(416, [\chi])3^{\oplus 3}\oplusS2new(1248,[χ])S_{2}^{\mathrm{new}}(1248, [\chi])2^{\oplus 2}