Properties

Label 3744.2.q
Level 37443744
Weight 22
Character orbit 3744.q
Rep. character χ3744(1249,)\chi_{3744}(1249,\cdot)
Character field Q(ζ3)\Q(\zeta_{3})
Dimension 288288
Sturm bound 13441344

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 3744=253213 3744 = 2^{5} \cdot 3^{2} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3744.q (of order 33 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 9 9
Character field: Q(ζ3)\Q(\zeta_{3})
Sturm bound: 13441344

Dimensions

The following table gives the dimensions of various subspaces of M2(3744,[χ])M_{2}(3744, [\chi]).

Total New Old
Modular forms 1376 288 1088
Cusp forms 1312 288 1024
Eisenstein series 64 0 64

Trace form

288q8q916q1716q21144q25+16q2956q3324q41+80q45144q49+96q53+40q57+32q6948q73+72q81+128q8996q93+24q97+O(q100) 288 q - 8 q^{9} - 16 q^{17} - 16 q^{21} - 144 q^{25} + 16 q^{29} - 56 q^{33} - 24 q^{41} + 80 q^{45} - 144 q^{49} + 96 q^{53} + 40 q^{57} + 32 q^{69} - 48 q^{73} + 72 q^{81} + 128 q^{89} - 96 q^{93} + 24 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(3744,[χ])S_{2}^{\mathrm{new}}(3744, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S2old(3744,[χ])S_{2}^{\mathrm{old}}(3744, [\chi]) into lower level spaces