Properties

Label 3750.2.g
Level $3750$
Weight $2$
Character orbit 3750.g
Rep. character $\chi_{3750}(751,\cdot)$
Character field $\Q(\zeta_{5})$
Dimension $320$
Sturm bound $1500$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3750 = 2 \cdot 3 \cdot 5^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3750.g (of order \(5\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 25 \)
Character field: \(\Q(\zeta_{5})\)
Sturm bound: \(1500\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3750, [\chi])\).

Total New Old
Modular forms 3240 320 2920
Cusp forms 2760 320 2440
Eisenstein series 480 0 480

Trace form

\( 320 q - 80 q^{4} - 80 q^{9} - 80 q^{16} - 40 q^{26} - 40 q^{29} + 60 q^{34} - 80 q^{36} - 40 q^{41} + 320 q^{49} - 40 q^{61} - 80 q^{64} - 40 q^{74} - 80 q^{81} + 60 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3750, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3750, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3750, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(125, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(150, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(250, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(375, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(625, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(750, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1250, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1875, [\chi])\)\(^{\oplus 2}\)