Properties

Label 3751.1.t
Level 37513751
Weight 11
Character orbit 3751.t
Rep. character χ3751(2138,)\chi_{3751}(2138,\cdot)
Character field Q(ζ10)\Q(\zeta_{10})
Dimension 6868
Newform subspaces 77
Sturm bound 352352
Trace bound 88

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 3751=11231 3751 = 11^{2} \cdot 31
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3751.t (of order 1010 and degree 44)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 341 341
Character field: Q(ζ10)\Q(\zeta_{10})
Newform subspaces: 7 7
Sturm bound: 352352
Trace bound: 88

Dimensions

The following table gives the dimensions of various subspaces of M1(3751,[χ])M_{1}(3751, [\chi]).

Total New Old
Modular forms 116 100 16
Cusp forms 68 68 0
Eisenstein series 48 32 16

The following table gives the dimensions of subspaces with specified projective image type.

DnD_n A4A_4 S4S_4 A5A_5
Dimension 68 0 0 0

Trace form

68q15q4+2q517q9+4q1413q16+6q2015q25+q3115q36+4q388q45+2q4715q4932q56+2q5911q648q67+8q70++2q97+O(q100) 68 q - 15 q^{4} + 2 q^{5} - 17 q^{9} + 4 q^{14} - 13 q^{16} + 6 q^{20} - 15 q^{25} + q^{31} - 15 q^{36} + 4 q^{38} - 8 q^{45} + 2 q^{47} - 15 q^{49} - 32 q^{56} + 2 q^{59} - 11 q^{64} - 8 q^{67} + 8 q^{70}+ \cdots + 2 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S1new(3751,[χ])S_{1}^{\mathrm{new}}(3751, [\chi]) into newform subspaces

Label Char Prim Dim AA Field Image CM RM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
3751.1.t.a 3751.t 341.t 44 1.8721.872 Q(ζ10)\Q(\zeta_{10}) D3D_{3} Q(31)\Q(\sqrt{-31}) None 31.1.b.a 1-1 00 11 1-1 qζ103q2ζ102q5ζ10q7ζ104q8+q-\zeta_{10}^{3}q^{2}-\zeta_{10}^{2}q^{5}-\zeta_{10}q^{7}-\zeta_{10}^{4}q^{8}+\cdots
3751.1.t.b 3751.t 341.t 44 1.8721.872 Q(ζ10)\Q(\zeta_{10}) D2D_{2} Q(11)\Q(\sqrt{-11}) , Q(31)\Q(\sqrt{-31}) Q(341)\Q(\sqrt{341}) 3751.1.d.a 00 00 2-2 00 q+ζ10q4+ζ102q5ζ103q9+ζ102q16+q+\zeta_{10}q^{4}+\zeta_{10}^{2}q^{5}-\zeta_{10}^{3}q^{9}+\zeta_{10}^{2}q^{16}+\cdots
3751.1.t.c 3751.t 341.t 44 1.8721.872 Q(ζ10)\Q(\zeta_{10}) D3D_{3} Q(31)\Q(\sqrt{-31}) None 31.1.b.a 11 00 11 11 q+ζ103q2ζ102q5+ζ10q7+ζ104q8+q+\zeta_{10}^{3}q^{2}-\zeta_{10}^{2}q^{5}+\zeta_{10}q^{7}+\zeta_{10}^{4}q^{8}+\cdots
3751.1.t.d 3751.t 341.t 88 1.8721.872 8.0.324000000.3 D6D_{6} Q(31)\Q(\sqrt{-31}) None 3751.1.d.c 00 00 22 00 qβ7q2+2β4q4+(1+β2+β4+β6+)q5+q-\beta _{7}q^{2}+2\beta _{4}q^{4}+(1+\beta _{2}+\beta _{4}+\beta _{6}+\cdots)q^{5}+\cdots
3751.1.t.e 3751.t 341.t 1212 1.8721.872 12.0.\cdots.1 D9D_{9} Q(31)\Q(\sqrt{-31}) None 3751.1.d.d 00 00 00 00 qβ5q2+(β6+β7β8)q4+(β2+β3+)q5+q-\beta _{5}q^{2}+(\beta _{6}+\beta _{7}-\beta _{8})q^{4}+(\beta _{2}+\beta _{3}+\cdots)q^{5}+\cdots
3751.1.t.f 3751.t 341.t 1212 1.8721.872 12.0.\cdots.1 D9D_{9} Q(31)\Q(\sqrt{-31}) None 3751.1.d.d 00 00 00 00 q+β5q2+(β6+β7β8)q4+(β2+β3+)q5+q+\beta _{5}q^{2}+(\beta _{6}+\beta _{7}-\beta _{8})q^{4}+(\beta _{2}+\beta _{3}+\cdots)q^{5}+\cdots
3751.1.t.g 3751.t 341.t 2424 1.8721.872 24.0.\cdots.2 D18D_{18} Q(31)\Q(\sqrt{-31}) None 3751.1.d.f 00 00 00 00 q+(β1β9+β11β14+β17+)q2+q+(-\beta _{1}-\beta _{9}+\beta _{11}-\beta _{14}+\beta _{17}+\cdots)q^{2}+\cdots