Properties

Label 3762.2.bn
Level 37623762
Weight 22
Character orbit 3762.bn
Rep. character χ3762(373,)\chi_{3762}(373,\cdot)
Character field Q(ζ6)\Q(\zeta_{6})
Dimension 480480
Sturm bound 14401440

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 3762=2321119 3762 = 2 \cdot 3^{2} \cdot 11 \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3762.bn (of order 66 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 1881 1881
Character field: Q(ζ6)\Q(\zeta_{6})
Sturm bound: 14401440

Dimensions

The following table gives the dimensions of various subspaces of M2(3762,[χ])M_{2}(3762, [\chi]).

Total New Old
Modular forms 1456 480 976
Cusp forms 1424 480 944
Eisenstein series 32 0 32

Trace form

480q6q3240q4+2q9+q11240q16+480q253q33+2q36+10q38+32q42+q4464q4548q47+6q48+240q49+480q6421q66++24q99+O(q100) 480 q - 6 q^{3} - 240 q^{4} + 2 q^{9} + q^{11} - 240 q^{16} + 480 q^{25} - 3 q^{33} + 2 q^{36} + 10 q^{38} + 32 q^{42} + q^{44} - 64 q^{45} - 48 q^{47} + 6 q^{48} + 240 q^{49} + 480 q^{64} - 21 q^{66}+ \cdots + 24 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(3762,[χ])S_{2}^{\mathrm{new}}(3762, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S2old(3762,[χ])S_{2}^{\mathrm{old}}(3762, [\chi]) into lower level spaces

S2old(3762,[χ]) S_{2}^{\mathrm{old}}(3762, [\chi]) \simeq S2new(1881,[χ])S_{2}^{\mathrm{new}}(1881, [\chi])2^{\oplus 2}