Properties

Label 3762.2.bn
Level $3762$
Weight $2$
Character orbit 3762.bn
Rep. character $\chi_{3762}(373,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $480$
Sturm bound $1440$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3762 = 2 \cdot 3^{2} \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3762.bn (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 1881 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(1440\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3762, [\chi])\).

Total New Old
Modular forms 1456 480 976
Cusp forms 1424 480 944
Eisenstein series 32 0 32

Trace form

\( 480 q - 6 q^{3} - 240 q^{4} + 2 q^{9} + q^{11} - 240 q^{16} + 480 q^{25} - 3 q^{33} + 2 q^{36} + 10 q^{38} + 32 q^{42} + q^{44} - 64 q^{45} - 48 q^{47} + 6 q^{48} + 240 q^{49} + 480 q^{64} - 21 q^{66}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3762, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3762, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3762, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(1881, [\chi])\)\(^{\oplus 2}\)