Properties

Label 3762.2.cu
Level 37623762
Weight 22
Character orbit 3762.cu
Rep. character χ3762(131,)\chi_{3762}(131,\cdot)
Character field Q(ζ18)\Q(\zeta_{18})
Dimension 14401440
Sturm bound 14401440

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 3762=2321119 3762 = 2 \cdot 3^{2} \cdot 11 \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3762.cu (of order 1818 and degree 66)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 1881 1881
Character field: Q(ζ18)\Q(\zeta_{18})
Sturm bound: 14401440

Dimensions

The following table gives the dimensions of various subspaces of M2(3762,[χ])M_{2}(3762, [\chi]).

Total New Old
Modular forms 4368 1440 2928
Cusp forms 4272 1440 2832
Eisenstein series 96 0 96

Trace form

1440q12q3+12q99q226q2760q33+12q36+36q45+6q48+720q49+180q59720q6421q6636q6772q69132q81+18q8260q93+39q99+O(q100) 1440 q - 12 q^{3} + 12 q^{9} - 9 q^{22} - 6 q^{27} - 60 q^{33} + 12 q^{36} + 36 q^{45} + 6 q^{48} + 720 q^{49} + 180 q^{59} - 720 q^{64} - 21 q^{66} - 36 q^{67} - 72 q^{69} - 132 q^{81} + 18 q^{82} - 60 q^{93}+ \cdots - 39 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(3762,[χ])S_{2}^{\mathrm{new}}(3762, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S2old(3762,[χ])S_{2}^{\mathrm{old}}(3762, [\chi]) into lower level spaces

S2old(3762,[χ]) S_{2}^{\mathrm{old}}(3762, [\chi]) \simeq S2new(1881,[χ])S_{2}^{\mathrm{new}}(1881, [\chi])2^{\oplus 2}