Properties

Label 3762.2.cu
Level $3762$
Weight $2$
Character orbit 3762.cu
Rep. character $\chi_{3762}(131,\cdot)$
Character field $\Q(\zeta_{18})$
Dimension $1440$
Sturm bound $1440$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3762 = 2 \cdot 3^{2} \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3762.cu (of order \(18\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 1881 \)
Character field: \(\Q(\zeta_{18})\)
Sturm bound: \(1440\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3762, [\chi])\).

Total New Old
Modular forms 4368 1440 2928
Cusp forms 4272 1440 2832
Eisenstein series 96 0 96

Trace form

\( 1440 q - 12 q^{3} + 12 q^{9} - 9 q^{22} - 6 q^{27} - 60 q^{33} + 12 q^{36} + 36 q^{45} + 6 q^{48} + 720 q^{49} + 180 q^{59} - 720 q^{64} - 21 q^{66} - 36 q^{67} - 72 q^{69} - 132 q^{81} + 18 q^{82} - 60 q^{93}+ \cdots - 39 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3762, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3762, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3762, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(1881, [\chi])\)\(^{\oplus 2}\)