Properties

Label 3762.2.d
Level $3762$
Weight $2$
Character orbit 3762.d
Rep. character $\chi_{3762}(683,\cdot)$
Character field $\Q$
Dimension $72$
Newform subspaces $2$
Sturm bound $1440$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3762 = 2 \cdot 3^{2} \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3762.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 57 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(1440\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3762, [\chi])\).

Total New Old
Modular forms 736 72 664
Cusp forms 704 72 632
Eisenstein series 32 0 32

Trace form

\( 72 q + 72 q^{4} - 16 q^{7} + 72 q^{16} - 24 q^{19} - 104 q^{25} - 16 q^{28} + 48 q^{43} + 136 q^{49} + 16 q^{58} - 48 q^{61} + 72 q^{64} + 80 q^{73} - 24 q^{76} + 48 q^{82} - 64 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3762, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
3762.2.d.a 3762.d 57.d $36$ $30.040$ None 3762.2.d.a \(-36\) \(0\) \(0\) \(-8\) $\mathrm{SU}(2)[C_{2}]$
3762.2.d.b 3762.d 57.d $36$ $30.040$ None 3762.2.d.a \(36\) \(0\) \(0\) \(-8\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{2}^{\mathrm{old}}(3762, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3762, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(57, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(114, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(171, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(342, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(627, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1254, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1881, [\chi])\)\(^{\oplus 2}\)