Properties

Label 3762.2.ep
Level $3762$
Weight $2$
Character orbit 3762.ep
Rep. character $\chi_{3762}(53,\cdot)$
Character field $\Q(\zeta_{90})$
Dimension $1920$
Sturm bound $1440$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3762 = 2 \cdot 3^{2} \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3762.ep (of order \(90\) and degree \(24\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 627 \)
Character field: \(\Q(\zeta_{90})\)
Sturm bound: \(1440\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3762, [\chi])\).

Total New Old
Modular forms 17664 1920 15744
Cusp forms 16896 1920 14976
Eisenstein series 768 0 768

Trace form

\( 1920 q - 24 q^{22} + 216 q^{25} + 96 q^{34} - 192 q^{43} + 144 q^{46} + 168 q^{49} - 360 q^{55} + 96 q^{58} + 192 q^{61} + 240 q^{64} - 96 q^{67} + 96 q^{70} - 216 q^{85} + 48 q^{91} - 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3762, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3762, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3762, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(627, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1254, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1881, [\chi])\)\(^{\oplus 2}\)