Properties

Label 3762.2.i
Level $3762$
Weight $2$
Character orbit 3762.i
Rep. character $\chi_{3762}(1255,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $360$
Sturm bound $1440$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3762 = 2 \cdot 3^{2} \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3762.i (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 9 \)
Character field: \(\Q(\zeta_{3})\)
Sturm bound: \(1440\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3762, [\chi])\).

Total New Old
Modular forms 1456 360 1096
Cusp forms 1424 360 1064
Eisenstein series 32 0 32

Trace form

\( 360 q - 4 q^{3} - 180 q^{4} - 4 q^{5} + 16 q^{6} - 12 q^{9} - 4 q^{11} - 4 q^{12} + 8 q^{14} + 4 q^{15} - 180 q^{16} - 4 q^{20} - 16 q^{21} - 8 q^{23} - 8 q^{24} - 168 q^{25} + 48 q^{26} - 16 q^{27} + 8 q^{29}+ \cdots - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3762, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3762, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3762, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(99, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(171, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(198, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(342, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1881, [\chi])\)\(^{\oplus 2}\)