Defining parameters
Level: | \( N \) | \(=\) | \( 378 = 2 \cdot 3^{3} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 378.v (of order \(9\) and degree \(6\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 189 \) |
Character field: | \(\Q(\zeta_{9})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(144\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(378, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 456 | 144 | 312 |
Cusp forms | 408 | 144 | 264 |
Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(378, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
378.2.v.a | $72$ | $3.018$ | None | \(0\) | \(0\) | \(0\) | \(-6\) | ||
378.2.v.b | $72$ | $3.018$ | None | \(0\) | \(0\) | \(0\) | \(6\) |
Decomposition of \(S_{2}^{\mathrm{old}}(378, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(378, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(189, [\chi])\)\(^{\oplus 2}\)