Properties

Label 378.2.v
Level $378$
Weight $2$
Character orbit 378.v
Rep. character $\chi_{378}(67,\cdot)$
Character field $\Q(\zeta_{9})$
Dimension $144$
Newform subspaces $2$
Sturm bound $144$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 378 = 2 \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 378.v (of order \(9\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 189 \)
Character field: \(\Q(\zeta_{9})\)
Newform subspaces: \( 2 \)
Sturm bound: \(144\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(378, [\chi])\).

Total New Old
Modular forms 456 144 312
Cusp forms 408 144 264
Eisenstein series 48 0 48

Trace form

\( 144 q + 6 q^{6} + 24 q^{9} + 24 q^{11} - 6 q^{14} - 12 q^{15} - 24 q^{17} - 30 q^{21} + 42 q^{23} - 36 q^{26} + 6 q^{29} + 18 q^{30} - 36 q^{33} - 36 q^{35} + 6 q^{36} - 72 q^{39} - 12 q^{41} + 48 q^{42}+ \cdots + 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(378, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
378.2.v.a 378.v 189.u $72$ $3.018$ None 378.2.v.a \(0\) \(0\) \(0\) \(-6\) $\mathrm{SU}(2)[C_{9}]$
378.2.v.b 378.v 189.u $72$ $3.018$ None 378.2.v.b \(0\) \(0\) \(0\) \(6\) $\mathrm{SU}(2)[C_{9}]$

Decomposition of \(S_{2}^{\mathrm{old}}(378, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(378, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(189, [\chi])\)\(^{\oplus 2}\)