Properties

Label 37845.2.a.d
Level 3784537845
Weight 22
Character orbit 37845.a
Self dual yes
Analytic conductor 302.194302.194
Dimension 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [37845,2,Mod(1,37845)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(37845, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("37845.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 37845=325292 37845 = 3^{2} \cdot 5 \cdot 29^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 37845.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 302.193846450302.193846450
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: not computed
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == qq2q4q5+3q8+q104q112q13q16+2q174q19+q20+4q22+q25+2q265q322q34+10q37+4q383q40++7q98+O(q100) q - q^{2} - q^{4} - q^{5} + 3 q^{8} + q^{10} - 4 q^{11} - 2 q^{13} - q^{16} + 2 q^{17} - 4 q^{19} + q^{20} + 4 q^{22} + q^{25} + 2 q^{26} - 5 q^{32} - 2 q^{34} + 10 q^{37} + 4 q^{38} - 3 q^{40}+ \cdots + 7 q^{98}+O(q^{100}) Copy content Toggle raw display

Atkin-Lehner signs

p p Sign
33 1 -1
55 +1 +1
2929 +1 +1

Inner twists

Inner twists of this newform have not been computed.

Twists

Twists of this newform have not been computed.