Properties

Label 38.6
Level 38
Weight 6
Dimension 75
Nonzero newspaces 3
Newform subspaces 8
Sturm bound 540
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 38 = 2 \cdot 19 \)
Weight: \( k \) = \( 6 \)
Nonzero newspaces: \( 3 \)
Newform subspaces: \( 8 \)
Sturm bound: \(540\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(38))\).

Total New Old
Modular forms 243 75 168
Cusp forms 207 75 132
Eisenstein series 36 0 36

Trace form

\( 75 q + 864 q^{12} - 4344 q^{13} - 3960 q^{14} - 3564 q^{15} + 4302 q^{17} + 8748 q^{18} + 12810 q^{19} + 3168 q^{20} - 1890 q^{21} - 8532 q^{22} - 10278 q^{23} - 23364 q^{25} - 3960 q^{26} + 41157 q^{27}+ \cdots - 197541 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(38))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
38.6.a \(\chi_{38}(1, \cdot)\) 38.6.a.a 1 1
38.6.a.b 1
38.6.a.c 2
38.6.a.d 3
38.6.c \(\chi_{38}(7, \cdot)\) 38.6.c.a 6 2
38.6.c.b 8
38.6.e \(\chi_{38}(5, \cdot)\) 38.6.e.a 24 6
38.6.e.b 30

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(38))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_1(38)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(19))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(38))\)\(^{\oplus 1}\)