Properties

Label 3825.2.a
Level $3825$
Weight $2$
Character orbit 3825.a
Rep. character $\chi_{3825}(1,\cdot)$
Character field $\Q$
Dimension $126$
Newform subspaces $46$
Sturm bound $1080$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3825 = 3^{2} \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3825.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 46 \)
Sturm bound: \(1080\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(2\), \(7\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(3825))\).

Total New Old
Modular forms 564 126 438
Cusp forms 517 126 391
Eisenstein series 47 0 47

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)\(5\)\(17\)FrickeDim
\(+\)\(+\)\(+\)\(+\)\(12\)
\(+\)\(+\)\(-\)\(-\)\(12\)
\(+\)\(-\)\(+\)\(-\)\(13\)
\(+\)\(-\)\(-\)\(+\)\(13\)
\(-\)\(+\)\(+\)\(-\)\(21\)
\(-\)\(+\)\(-\)\(+\)\(15\)
\(-\)\(-\)\(+\)\(+\)\(18\)
\(-\)\(-\)\(-\)\(-\)\(22\)
Plus space\(+\)\(58\)
Minus space\(-\)\(68\)

Trace form

\( 126 q + 2 q^{2} + 126 q^{4} + 4 q^{7} - 6 q^{8} + 4 q^{11} - 4 q^{13} + 134 q^{16} - 2 q^{17} - 12 q^{19} + 8 q^{22} + 8 q^{23} - 4 q^{26} + 8 q^{28} + 16 q^{29} - 8 q^{31} - 10 q^{32} - 2 q^{34} - 12 q^{37}+ \cdots + 30 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(3825))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3 5 17
3825.2.a.a 3825.a 1.a $1$ $30.543$ \(\Q\) None 1275.2.a.a \(-2\) \(0\) \(0\) \(-1\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+2q^{4}-q^{7}-2q^{11}+7q^{13}+\cdots\)
3825.2.a.b 3825.a 1.a $1$ $30.543$ \(\Q\) None 153.2.a.a \(-2\) \(0\) \(0\) \(2\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+2q^{4}+2q^{7}+3q^{11}+5q^{13}+\cdots\)
3825.2.a.c 3825.a 1.a $1$ $30.543$ \(\Q\) None 255.2.b.a \(-1\) \(0\) \(0\) \(-4\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{4}-4q^{7}+3q^{8}-6q^{11}+\cdots\)
3825.2.a.d 3825.a 1.a $1$ $30.543$ \(\Q\) None 17.2.a.a \(-1\) \(0\) \(0\) \(-4\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{4}-4q^{7}+3q^{8}+2q^{13}+\cdots\)
3825.2.a.e 3825.a 1.a $1$ $30.543$ \(\Q\) None 765.2.a.b \(-1\) \(0\) \(0\) \(-4\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{4}-4q^{7}+3q^{8}+2q^{11}+\cdots\)
3825.2.a.f 3825.a 1.a $1$ $30.543$ \(\Q\) None 425.2.a.b \(-1\) \(0\) \(0\) \(1\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{4}+q^{7}+3q^{8}+4q^{11}-q^{13}+\cdots\)
3825.2.a.g 3825.a 1.a $1$ $30.543$ \(\Q\) None 1275.2.a.c \(0\) \(0\) \(0\) \(-1\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-2q^{4}-q^{7}-2q^{11}+q^{13}+4q^{16}+\cdots\)
3825.2.a.h 3825.a 1.a $1$ $30.543$ \(\Q\) None 1275.2.a.c \(0\) \(0\) \(0\) \(1\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{4}+q^{7}-2q^{11}-q^{13}+4q^{16}+\cdots\)
3825.2.a.i 3825.a 1.a $1$ $30.543$ \(\Q\) None 51.2.a.a \(0\) \(0\) \(0\) \(4\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{4}+4q^{7}+3q^{11}+q^{13}+4q^{16}+\cdots\)
3825.2.a.j 3825.a 1.a $1$ $30.543$ \(\Q\) None 765.2.a.b \(1\) \(0\) \(0\) \(-4\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{4}-4q^{7}-3q^{8}-2q^{11}+\cdots\)
3825.2.a.k 3825.a 1.a $1$ $30.543$ \(\Q\) None 425.2.a.b \(1\) \(0\) \(0\) \(-1\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{4}-q^{7}-3q^{8}+4q^{11}+q^{13}+\cdots\)
3825.2.a.l 3825.a 1.a $1$ $30.543$ \(\Q\) None 85.2.a.a \(1\) \(0\) \(0\) \(2\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{4}+2q^{7}-3q^{8}-2q^{11}+\cdots\)
3825.2.a.m 3825.a 1.a $1$ $30.543$ \(\Q\) None 255.2.b.a \(1\) \(0\) \(0\) \(4\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{4}+4q^{7}-3q^{8}-6q^{11}+\cdots\)
3825.2.a.n 3825.a 1.a $1$ $30.543$ \(\Q\) None 1275.2.a.a \(2\) \(0\) \(0\) \(1\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+2q^{4}+q^{7}-2q^{11}-7q^{13}+\cdots\)
3825.2.a.o 3825.a 1.a $1$ $30.543$ \(\Q\) None 153.2.a.a \(2\) \(0\) \(0\) \(2\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+2q^{4}+2q^{7}-3q^{11}+5q^{13}+\cdots\)
3825.2.a.p 3825.a 1.a $2$ $30.543$ \(\Q(\sqrt{2}) \) None 85.2.a.b \(-2\) \(0\) \(0\) \(4\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta )q^{2}+(1-2\beta )q^{4}+(2-\beta )q^{7}+\cdots\)
3825.2.a.q 3825.a 1.a $2$ $30.543$ \(\Q(\sqrt{5}) \) None 255.2.b.b \(-1\) \(0\) \(0\) \(2\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta q^{2}+(-1+\beta )q^{4}+q^{7}+(-1+2\beta )q^{8}+\cdots\)
3825.2.a.r 3825.a 1.a $2$ $30.543$ \(\Q(\sqrt{5}) \) None 765.2.a.e \(-1\) \(0\) \(0\) \(4\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta q^{2}+(-1+\beta )q^{4}+(1+2\beta )q^{7}+\cdots\)
3825.2.a.s 3825.a 1.a $2$ $30.543$ \(\Q(\sqrt{17}) \) None 51.2.a.b \(-1\) \(0\) \(0\) \(0\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta q^{2}+(2+\beta )q^{4}+(-4-\beta )q^{8}+(1+\cdots)q^{11}+\cdots\)
3825.2.a.t 3825.a 1.a $2$ $30.543$ \(\Q(\sqrt{2}) \) None 1275.2.a.k \(0\) \(0\) \(0\) \(-6\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+(-3-\beta )q^{7}-2\beta q^{8}+(2-2\beta )q^{11}+\cdots\)
3825.2.a.u 3825.a 1.a $2$ $30.543$ \(\Q(\sqrt{2}) \) None 1275.2.a.k \(0\) \(0\) \(0\) \(6\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+(3-\beta )q^{7}-2\beta q^{8}+(2+2\beta )q^{11}+\cdots\)
3825.2.a.v 3825.a 1.a $2$ $30.543$ \(\Q(\sqrt{3}) \) None 85.2.a.c \(0\) \(0\) \(0\) \(2\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+q^{4}+(1-\beta )q^{7}-\beta q^{8}+(-3+\cdots)q^{11}+\cdots\)
3825.2.a.w 3825.a 1.a $2$ $30.543$ \(\Q(\sqrt{5}) \) None 255.2.b.b \(1\) \(0\) \(0\) \(-2\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+(-1+\beta )q^{4}-q^{7}+(1-2\beta )q^{8}+\cdots\)
3825.2.a.x 3825.a 1.a $2$ $30.543$ \(\Q(\sqrt{5}) \) None 765.2.a.e \(1\) \(0\) \(0\) \(4\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+(-1+\beta )q^{4}+(1+2\beta )q^{7}+\cdots\)
3825.2.a.y 3825.a 1.a $2$ $30.543$ \(\Q(\sqrt{13}) \) None 255.2.a.a \(1\) \(0\) \(0\) \(0\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+(1+\beta )q^{4}+(1-2\beta )q^{7}+3q^{8}+\cdots\)
3825.2.a.z 3825.a 1.a $2$ $30.543$ \(\Q(\sqrt{5}) \) None 255.2.a.b \(3\) \(0\) \(0\) \(0\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{2}+3\beta q^{4}+(-1+2\beta )q^{7}+\cdots\)
3825.2.a.ba 3825.a 1.a $3$ $30.543$ 3.3.148.1 None 1275.2.a.o \(-2\) \(0\) \(0\) \(1\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{2}+(1-\beta _{1}+\beta _{2})q^{4}+\cdots\)
3825.2.a.bb 3825.a 1.a $3$ $30.543$ 3.3.229.1 None 255.2.a.c \(0\) \(0\) \(0\) \(-4\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(1+\beta _{2})q^{4}+(-1-\beta _{1}+\beta _{2})q^{7}+\cdots\)
3825.2.a.bc 3825.a 1.a $3$ $30.543$ 3.3.148.1 None 1275.2.a.q \(0\) \(0\) \(0\) \(-1\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{2}q^{2}+(1-\beta _{1}-\beta _{2})q^{4}+(-1+2\beta _{1}+\cdots)q^{7}+\cdots\)
3825.2.a.bd 3825.a 1.a $3$ $30.543$ 3.3.148.1 None 1275.2.a.q \(0\) \(0\) \(0\) \(1\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{2}q^{2}+(1-\beta _{1}-\beta _{2})q^{4}+(1-2\beta _{1}+\cdots)q^{7}+\cdots\)
3825.2.a.be 3825.a 1.a $3$ $30.543$ 3.3.621.1 None 765.2.a.k \(0\) \(0\) \(0\) \(0\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(2+\beta _{1}+\beta _{2})q^{4}-\beta _{2}q^{7}+\cdots\)
3825.2.a.bf 3825.a 1.a $3$ $30.543$ 3.3.621.1 None 765.2.a.k \(0\) \(0\) \(0\) \(0\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(2+\beta _{1}+\beta _{2})q^{4}-\beta _{2}q^{7}+\cdots\)
3825.2.a.bg 3825.a 1.a $3$ $30.543$ 3.3.148.1 None 1275.2.a.o \(2\) \(0\) \(0\) \(-1\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}+(1-\beta _{1}+\beta _{2})q^{4}+(-\beta _{1}+\cdots)q^{7}+\cdots\)
3825.2.a.bh 3825.a 1.a $4$ $30.543$ 4.4.6224.1 None 85.2.b.a \(-2\) \(0\) \(0\) \(10\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{3})q^{2}+(1-\beta _{1}-\beta _{2})q^{4}+\cdots\)
3825.2.a.bi 3825.a 1.a $4$ $30.543$ 4.4.13768.1 None 255.2.a.d \(1\) \(0\) \(0\) \(-4\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{3}q^{2}+(2-\beta _{1})q^{4}+(-1+\beta _{2}-\beta _{3})q^{7}+\cdots\)
3825.2.a.bj 3825.a 1.a $4$ $30.543$ 4.4.6224.1 None 85.2.b.a \(2\) \(0\) \(0\) \(-10\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(1-\beta _{3})q^{2}+(1-\beta _{1}-\beta _{2})q^{4}+(-2+\cdots)q^{7}+\cdots\)
3825.2.a.bk 3825.a 1.a $5$ $30.543$ 5.5.3717884.1 None 255.2.b.c \(-2\) \(0\) \(0\) \(2\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(2+\beta _{2})q^{4}+(\beta _{1}-\beta _{2})q^{7}+\cdots\)
3825.2.a.bl 3825.a 1.a $5$ $30.543$ 5.5.1893456.1 None 425.2.a.i \(-1\) \(0\) \(0\) \(-1\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{2}q^{2}+(2+\beta _{1}+\beta _{2}+\beta _{4})q^{4}+(\beta _{3}+\cdots)q^{7}+\cdots\)
3825.2.a.bm 3825.a 1.a $5$ $30.543$ 5.5.2716368.1 None 3825.2.a.bm \(0\) \(0\) \(0\) \(-5\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(1+\beta _{2})q^{4}+(-1-\beta _{1})q^{7}+\cdots\)
3825.2.a.bn 3825.a 1.a $5$ $30.543$ 5.5.2716368.1 None 3825.2.a.bm \(0\) \(0\) \(0\) \(-5\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(1+\beta _{2})q^{4}+(-1-\beta _{1})q^{7}+\cdots\)
3825.2.a.bo 3825.a 1.a $5$ $30.543$ 5.5.2716368.1 None 3825.2.a.bm \(0\) \(0\) \(0\) \(5\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(1+\beta _{2})q^{4}+(1+\beta _{1})q^{7}+\cdots\)
3825.2.a.bp 3825.a 1.a $5$ $30.543$ 5.5.2716368.1 None 3825.2.a.bm \(0\) \(0\) \(0\) \(5\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(1+\beta _{2})q^{4}+(1+\beta _{1})q^{7}+\cdots\)
3825.2.a.bq 3825.a 1.a $5$ $30.543$ 5.5.1893456.1 None 425.2.a.i \(1\) \(0\) \(0\) \(1\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{2}q^{2}+(2+\beta _{1}+\beta _{2}+\beta _{4})q^{4}+(-\beta _{3}+\cdots)q^{7}+\cdots\)
3825.2.a.br 3825.a 1.a $5$ $30.543$ 5.5.3717884.1 None 255.2.b.c \(2\) \(0\) \(0\) \(-2\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(2+\beta _{2})q^{4}+(-\beta _{1}+\beta _{2}+\cdots)q^{7}+\cdots\)
3825.2.a.bs 3825.a 1.a $8$ $30.543$ 8.8.\(\cdots\).1 None 765.2.b.e \(-4\) \(0\) \(0\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{6})q^{2}+(1-\beta _{2}-\beta _{6})q^{4}+\cdots\)
3825.2.a.bt 3825.a 1.a $8$ $30.543$ 8.8.\(\cdots\).1 None 765.2.b.e \(4\) \(0\) \(0\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(1-\beta _{6})q^{2}+(1-\beta _{2}-\beta _{6})q^{4}-\beta _{4}q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(3825))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(3825)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(45))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(51))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(75))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(85))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(153))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(225))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(255))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(425))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(765))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1275))\)\(^{\oplus 2}\)