Defining parameters
Level: | \( N \) | \(=\) | \( 3825 = 3^{2} \cdot 5^{2} \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 3825.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 46 \) | ||
Sturm bound: | \(1080\) | ||
Trace bound: | \(11\) | ||
Distinguishing \(T_p\): | \(2\), \(7\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(3825))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 564 | 126 | 438 |
Cusp forms | 517 | 126 | 391 |
Eisenstein series | 47 | 0 | 47 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(5\) | \(17\) | Fricke | Dim |
---|---|---|---|---|
\(+\) | \(+\) | \(+\) | \(+\) | \(12\) |
\(+\) | \(+\) | \(-\) | \(-\) | \(12\) |
\(+\) | \(-\) | \(+\) | \(-\) | \(13\) |
\(+\) | \(-\) | \(-\) | \(+\) | \(13\) |
\(-\) | \(+\) | \(+\) | \(-\) | \(21\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(15\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(18\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(22\) |
Plus space | \(+\) | \(58\) | ||
Minus space | \(-\) | \(68\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(3825))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(3825))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(3825)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(45))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(51))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(75))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(85))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(153))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(225))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(255))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(425))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(765))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1275))\)\(^{\oplus 2}\)