Defining parameters
Level: | \( N \) | \(=\) | \( 384 = 2^{7} \cdot 3 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 384.h (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 24 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(64\) | ||
Trace bound: | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(384, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 22 | 2 | 20 |
Cusp forms | 6 | 2 | 4 |
Eisenstein series | 16 | 0 | 16 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 2 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(384, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
384.1.h.a | $1$ | $0.192$ | \(\Q\) | $D_{2}$ | \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{-6}) \) | \(\Q(\sqrt{3}) \) | \(0\) | \(-1\) | \(0\) | \(0\) | \(q-q^{3}+q^{9}+2q^{11}-q^{25}-q^{27}+\cdots\) |
384.1.h.b | $1$ | $0.192$ | \(\Q\) | $D_{2}$ | \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{-6}) \) | \(\Q(\sqrt{3}) \) | \(0\) | \(1\) | \(0\) | \(0\) | \(q+q^{3}+q^{9}-2q^{11}-q^{25}+q^{27}+\cdots\) |
Decomposition of \(S_{1}^{\mathrm{old}}(384, [\chi])\) into lower level spaces
\( S_{1}^{\mathrm{old}}(384, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(192, [\chi])\)\(^{\oplus 2}\)