Defining parameters
Level: | \( N \) | \(=\) | \( 3840 = 2^{8} \cdot 3 \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 3840.y (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 80 \) |
Character field: | \(\Q(i)\) | ||
Sturm bound: | \(1536\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(3840, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1632 | 192 | 1440 |
Cusp forms | 1440 | 192 | 1248 |
Eisenstein series | 192 | 0 | 192 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(3840, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(3840, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(3840, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(80, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(240, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(320, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(640, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(960, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1280, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1920, [\chi])\)\(^{\oplus 2}\)