Properties

Label 3872.2.bn
Level 38723872
Weight 22
Character orbit 3872.bn
Rep. character χ3872(245,)\chi_{3872}(245,\cdot)
Character field Q(ζ40)\Q(\zeta_{40})
Dimension 67846784
Sturm bound 10561056

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 3872=25112 3872 = 2^{5} \cdot 11^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3872.bn (of order 4040 and degree 1616)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 352 352
Character field: Q(ζ40)\Q(\zeta_{40})
Sturm bound: 10561056

Dimensions

The following table gives the dimensions of various subspaces of M2(3872,[χ])M_{2}(3872, [\chi]).

Total New Old
Modular forms 8640 7040 1600
Cusp forms 8256 6784 1472
Eisenstein series 384 256 128

Trace form

6784q+12q2+12q3+12q4+12q5+12q6+12q7+12q8+12q9+32q1096q12+12q13+44q14+52q1648q18+12q19+44q20+32q21++48q98+O(q100) 6784 q + 12 q^{2} + 12 q^{3} + 12 q^{4} + 12 q^{5} + 12 q^{6} + 12 q^{7} + 12 q^{8} + 12 q^{9} + 32 q^{10} - 96 q^{12} + 12 q^{13} + 44 q^{14} + 52 q^{16} - 48 q^{18} + 12 q^{19} + 44 q^{20} + 32 q^{21}+ \cdots + 48 q^{98}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(3872,[χ])S_{2}^{\mathrm{new}}(3872, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S2old(3872,[χ])S_{2}^{\mathrm{old}}(3872, [\chi]) into lower level spaces

S2old(3872,[χ]) S_{2}^{\mathrm{old}}(3872, [\chi]) \simeq S2new(352,[χ])S_{2}^{\mathrm{new}}(352, [\chi])2^{\oplus 2}