Defining parameters
Level: | \( N \) | \(=\) | \( 3872 = 2^{5} \cdot 11^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 3872.bn (of order \(40\) and degree \(16\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 352 \) |
Character field: | \(\Q(\zeta_{40})\) | ||
Sturm bound: | \(1056\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(3872, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 8640 | 7040 | 1600 |
Cusp forms | 8256 | 6784 | 1472 |
Eisenstein series | 384 | 256 | 128 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(3872, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(3872, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(3872, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(352, [\chi])\)\(^{\oplus 2}\)