Properties

Label 3872.2.bn
Level $3872$
Weight $2$
Character orbit 3872.bn
Rep. character $\chi_{3872}(245,\cdot)$
Character field $\Q(\zeta_{40})$
Dimension $6784$
Sturm bound $1056$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3872 = 2^{5} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3872.bn (of order \(40\) and degree \(16\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 352 \)
Character field: \(\Q(\zeta_{40})\)
Sturm bound: \(1056\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3872, [\chi])\).

Total New Old
Modular forms 8640 7040 1600
Cusp forms 8256 6784 1472
Eisenstein series 384 256 128

Trace form

\( 6784 q + 12 q^{2} + 12 q^{3} + 12 q^{4} + 12 q^{5} + 12 q^{6} + 12 q^{7} + 12 q^{8} + 12 q^{9} + 32 q^{10} - 96 q^{12} + 12 q^{13} + 44 q^{14} + 52 q^{16} - 48 q^{18} + 12 q^{19} + 44 q^{20} + 32 q^{21}+ \cdots + 48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3872, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3872, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3872, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(352, [\chi])\)\(^{\oplus 2}\)