Properties

Label 3872.2.bs
Level $3872$
Weight $2$
Character orbit 3872.bs
Rep. character $\chi_{3872}(97,\cdot)$
Character field $\Q(\zeta_{55})$
Dimension $5280$
Sturm bound $1056$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3872 = 2^{5} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3872.bs (of order \(55\) and degree \(40\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 121 \)
Character field: \(\Q(\zeta_{55})\)
Sturm bound: \(1056\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3872, [\chi])\).

Total New Old
Modular forms 21440 5280 16160
Cusp forms 20800 5280 15520
Eisenstein series 640 0 640

Trace form

\( 5280 q - 1328 q^{9} - 8 q^{17} + 116 q^{25} + 20 q^{33} + 48 q^{41} + 140 q^{49} + 72 q^{53} - 96 q^{57} - 16 q^{61} - 16 q^{65} - 32 q^{69} + 216 q^{77} - 1260 q^{81} + 96 q^{85} - 24 q^{89} + 16 q^{93}+ \cdots + 84 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3872, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3872, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3872, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(121, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(242, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(484, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(968, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1936, [\chi])\)\(^{\oplus 2}\)