Defining parameters
Level: | \( N \) | \(=\) | \( 3872 = 2^{5} \cdot 11^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 3872.bs (of order \(55\) and degree \(40\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 121 \) |
Character field: | \(\Q(\zeta_{55})\) | ||
Sturm bound: | \(1056\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(3872, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 21440 | 5280 | 16160 |
Cusp forms | 20800 | 5280 | 15520 |
Eisenstein series | 640 | 0 | 640 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(3872, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(3872, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(3872, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(121, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(242, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(484, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(968, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1936, [\chi])\)\(^{\oplus 2}\)