Properties

Label 3872.2.by
Level $3872$
Weight $2$
Character orbit 3872.by
Rep. character $\chi_{3872}(79,\cdot)$
Character field $\Q(\zeta_{110})$
Dimension $5200$
Sturm bound $1056$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3872 = 2^{5} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3872.by (of order \(110\) and degree \(40\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 968 \)
Character field: \(\Q(\zeta_{110})\)
Sturm bound: \(1056\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3872, [\chi])\).

Total New Old
Modular forms 21440 5360 16080
Cusp forms 20800 5200 15600
Eisenstein series 640 160 480

Trace form

\( 5200 q + 60 q^{3} - 1320 q^{9} + 76 q^{11} - 78 q^{17} + 78 q^{19} - 204 q^{25} - 60 q^{27} - 16 q^{33} + 78 q^{35} - 78 q^{41} + 88 q^{43} + 36 q^{49} + 12 q^{51} - 56 q^{57} + 82 q^{59} - 88 q^{65} + 32 q^{67}+ \cdots - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3872, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3872, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3872, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(968, [\chi])\)\(^{\oplus 3}\)